Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

BRITISH STANDARD

Programmable
controllers — Q@)QG

Part 3: Programmirﬁ“l\%ﬂgclgges
I\

\\\\\3‘

The European Standard EN 61161-3:2003 has the status of a
British Standard

ICS 25.040; 35.240.50

BS EN
61131-3:2003

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW
]

-
J:

British Standards



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

BS EN 61131-3:2003

This British Standard was
published under the authority
of the Standards Policy and
Strategy Committee on

16 June 2003

© BSI 16 June 2003

ISBN 0 580 42021 3

National foreword

This British Standard is the official English language version of
EN 61131-3:2003. Itisidentical withIEC 61131-3:2003. It supersedes
BS EN 61131-3:1993 which is withdrawn.

The UK participation in its preparation was entrusted by Technical Commj @\
GEL/65, Measurement and control, to Subcommittee GEL/65/2, Elem

ge5 .
— present to the responsible internat;j @ﬁgean committee any
“\K&) s

systems, which has the responsibility to:

— aid enquirers to understand the text;

enquiries on the interpretatio als for change, and keep the
UK interests informed; G

.
— monitor related i 10nal and European developments and
promulgatelt the UK.
.
A list of &Qi(‘)ns represented on this subcommittee can be obtained on
request seCretary.

Cross-references

The British Standards which implement international or European
publications referred to in this document may be found in the BSI Catalogue
under the section entitled “International Standards Correspondence Index”, or
by using the “Search” facility of the BSI Electronic Catalogue or of

British Standards Online.

This publication does not purport to include all the necessary provisions of a
contract. Users are responsible for its correct application.

Compliance with a British Standard does not of itself confer immunity
from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page,
pages 2 to 219, an inside back cover and a back cover.

The BSI copyright date displayed in this document indicates when the
document was last issued.

Amendments issued since publication

Amd. No. Date Comments




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EUROPEAN STANDARD EN 61131-3
NORME EUROPEENNE
EUROPAISCHE NORM March 2003

="a\
\ M
ICS 25.040; 35.240.50 S V@Q 61131-3:1993
.

English version ga'\)ge
Programmabl \g@&}%ers
Part 3: Pro |§{ g languages

\\ 131-3:2003)
Automates programma \ Speicherprogrammierbare Steuerungen
Partie 3: Langages de programmation Teil 3: Programmiersprachen
(CEI 61131-3:2003) (IEC 61131-3:2003)

This European Standard was approved by CENELEC on 2002-12-01. CENELEC members are bound to
comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European
Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and
notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Republic,
Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, Malta,
Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europaisches Komitee fur Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2003 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Ref. No. EN 61131-3:2003 E



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 2

EN 61131-3:2002

Foreword

The text of document 65B/456/FDIS, future edition 2 of IEC 61131-3, prepared by SC 65B, Devices, of
IEC TC 65, Industrial-process measurement and control, was submitted to the IEC-CENELEC para
vote and was approved by CENELEC as EN 61131-3 on 2002-12-01. C)O

This European Standard supersedes EN 61131-3:1993. ges
The following dates were fixed: 6’

O
— latest date by which the EN has to be implemented ‘\\(\a‘

at national level by publication of an identical
national standard or by endorsement N (dop) 2003-10-01
— latest date by which the national sia\.\ conflicting
with the EN have to be W|t (dow)  2005-12-01
Annexes designated "normativ E" are part of the body of the standard.
Annexes designated "informative" are given for information only.

In this standard, annexes A, B, C, D, E and ZA are normative and annexes F and G are informative.
Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 61131-3:2003 was approved by CENELEC as a European
Standard without any modification.

W



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 3
EN 61131-3:2002

CONTENTS
1 GONEIAN ..ottt ettt ettt GQ((\
LR S Yoo o 1= T PRSP es' ...... 9
1.2 NOIMALIVE FEFEIENCES ......eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et aeserareseseseresages Q .................. 9
1.3 DEFINIIONS ... @, ......................... 9
1.4 Overview and general requirements .........cccccceveiriiieneniiiee e 2 P W 14
1.4.1 SOMWAIE MOTEL......vevoeeeeeeeeeeeeeeeee e . '\ ............................................. 14
1.4.2 Communication model...........cccccuvvvvvvvvvverneenvnnnnensnnn \(\ ................................................... 16

2.1 Use of printed CharacCters ...t e e e e e e e e e ennneees 22
Nt Bt B O 4 = = T =Y = S 22
2t B T 1Y 1= = S 23
2,703 KEYWOITS ...ttt e et e ot e e e bt e e e a bt e e e e e e e ab bbb e e e ean e 23
2.1.4 USE Of Whit@ SPACE ....eiiiiiiiieeiee ettt e e e e e e e e e e e e ennneeee 23
2t T T ©o o 10 0= 01 < S 24
P2 I ST o = To 0 1 =T S PP 24
2.2 External representation of data ... 24
A B N 18] g 1= 4 (o 11 =T = O 24
2.2.2 Character string HErals ... e 25
A T 14T 11 (=T = 27
2 Tt I 01U 1T o 27
2.2.3.2 Time of day and date...........ooueiiiiiiiiii e e 28
PR I D - = 11 o= T T SRR 28
2.3.1 Elementary data tyPes. ........ei i 29
2.3.2 GENENIC dAta LYPES ....eeiiiiiiiii e 30
2.3.3 Derived data tyPeS. . ...ooii it 31
P2 TR Tt =Yo7 - = 4o o S 31
P2 TR T [ 111 =Y [ 22 (o o S 32
PR G TR T U 7= Lo = PSPPSR 34
=T -1 o Y S 35
At B =T o <TST =T o1 =1 (o] o S 35
2.4.1.1 Single-element variables ............oo i 35
2.4.1.2 Multi-element Variables ....... ..o 37
A 1 o1 =11 2= 4o ) o S 37
A B B 1= Yo7 =1 = 4[] o S 38
2.4.3.1 TYPE @SSIGNMENT ...ttt b et e s b et e s e b e e e et e e eanee 40
2.4.3.2 Initial value assignmeENt ...........ooiiiiii e e 41
2.5 Program organization UNIS ............cooiiiiiiiiiiie e e 44
2 0t B Vo T 1] o 1= 44
2.5.1.1 RePreSENTatioN .....oooii it e e e e e e 45
2.5.1.2 EXECULION CONTIO ...t e e e e e e e e e e ennnee e 48
A Tt I B =T - = 4o o TR 49
2.5.1.4 Typing, overloading, and type CONVEISION..........cccuuiieiiiiiieiiiiee e 51
2.5.1.5 Standard fUNCHONS.......coi et e e e e e e e e e e e e e ennneees 54
2.5.1.5.1 Type conversion fUNCHONS.........ocuuiiiii e 54
2.5.1.5.2 NUmerical FUNCHONS ... ...t e e e a e e e e 55
2.5.1.5.3 Bit StriNg FUNCHONS ... e 58
2.5.1.5.4 Selection and comparison fUNCLIONS...........ccuiiiiiiii e 58
2.5.1.5.5 Character string fUNCLONS ........ocuiiiii e 61
2.5.1.5.6 Functions of time data tyPes ..........ooiiiiiiiii e 63

2.5.1.5.7 Functions of enumerated data types .........cccooiiiiiiiiiiiii 65



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 4

EN 61131-3:2002

2.5.2 FUNCHON DIOCKS.... ..ot e e e e e e e e e e e e e 65
A T I o= o 1= 1= = o o 66
2.5.2.1a) Use of EN and ENO in function BIOCKS ............uvviiiiiiiiiiieie e 67
I B 1Tl F- T = | (o] o 68
2.5.2.3 Standard function BIOCKS ...........eeiiieeeeeee et Y
2.5.2.3.1 Bistable elements .............ccccooiiiiiiiiii 6‘07
2.5.2.3.2 EAGE QEMOCHON....rrreeeorseeeess oo eresseeseeesseeserees e Ac2’ . 77
2.5.2.3.3 COUNLEIS c..oeeeeeeeeeeeeeeee ez M \) .................. 77
D.5.2.3.4 THMIEIS vvvooooooooe oo ¢Q ............................. 80
2.5.2.3.5 Communication function blocks...........cccoeeveeviiieeee 2 NG e, 82
2.5.3 PrOQrams .......ccceoviuiieieiereeieesieseeeeieseessese e ‘\\ ................................................ 82
2.6 Sequential Function Chart (SFC) elements.......a\.. G ......................................................... 83
2.6.1 GENEral.......cooovoveieeeeeeeeeseeeeeeeen. NN s 83
ATV (=1 o1 S 5 . N8 N T S 83
2.6.3 Transitions ........c.cocvevee.... TR T TS 85
2.6.4 ACONS ......ovveeen g \\‘ SO 88
D S B B 1Tl = (o . VO 88
2.6.4.2 AssocCiation With SEEPS ... ... 90
P S G R A od o] N o] (o o1 <= 91
A oo Ie TU =1 1= 92
2.6.4.5 ACHON CONTIOL... ..o et e e e e e e et e e e e e e e et e eeeas 93
2.6.5 RUIES Of @VOIULION .. ..o ettt e e e e e e e 98
2.6.6 Compatibility 0f SFC €lemMeEnts ........c..ooiiiiiiii e 106
2.6.7 SFC Compliance reqUIrEMENTS ... i e e e e e e e e e e e e eneeeeeaaeeean 107
2.7 Configuration ElEMENTS..........eiii e 107
2.7.1 Configurations, resources, and access paths ... 109
A - 1] 113
3 TeXtUAl [ANQUAGES .....oooiiiiiii ettt e e e 122
G T I 001011 g ToT A I=1 = 0 [T o 122
3.2 INSEUCHON TIST (IL) .ottt e e e 122
G T2 I 1 1) 1 {0 T3 (o 1= 122
3.2.2 Operators, modifiers and Operands...........ccooooiiiiiiiiiiieae e 123
3.2.3 Functions and fUNCLON DIOCKS ..........cooiiiiiiiieee e 125
3.3 SHrUCIUIEA TeXE (ST) . uiiieiiiiiiie et e e e e e 128
G TR Tt O o] === [ o 1RSSR 128
BTG S | v (=10 0 [ 0| TR 130
3.3.2.1 Assignment Statements ...........ooiiiiiii e 132
3.3.2.2 Function and function block control statements.............c.oooviveiiiiiiiiicieee e 132
3.3.2.3 SeleCtion StatEMENTS ..........oooeiiee e 132
3.3.2.4 Iteration Stat@mMENTES .......coo e 133
4 GraphiC laNQUAGES .....cooi ittt e bbb e s e e e e e e nraee e 134
N I 7010 o g o) o =1 (=10 0 1Y o) T 134
4.1.1 Representation of lines and bIOCKS ............oiiiiiiiii e 134
4.1.2 Direction of flOW in NEIWOIKS.........coooiiiiee et e e e eeeeees 134
4.1.3 EVvaluation Of NEIWOIKS ........coviiiiiiieee et e e e e e e e e ee e e e e e e e eeeeeees 135
4.1.4 Execution CONTrol €IEMENES .........iiiiieeeeee et e e e e e e e eeaaaaes 137
4.2 Ladder diagram (LD) ......cooo i 138
o B o YT ol = 1] £ TR 138
4.2.2 Link elements and StatesS..........cooiiiiiiiiiiiie e 138
G T 070 o] = To1 (< J TR 139
N N O 11 = 139
4.2.5 Functions and fuNCtion DIOCKS ...........oovuiiiiiei e eaaas 139
4.2.6 Order of Network evaluation ..............ooouuiiiiiiiii et eeeeaaaes 140
4.3 Function Block Diagram (FBD).........cuiiiuiiiiiiiiie et 142
R N B € T=T =Y = | RS 142
4.3.2 Combination Of IEMENLES...........uoiiiiiieeee et eeeeraees 142
4.3.3 Order of Network evaluation ..............ooouuiiiiiiiii et eeraaes 142

\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 5

EN 61131-3:2002
ANNEX A (normative) Specification method for textual languages ............ccoeccvvieeveeeiiiciinneeennn. 143
N I Y ] - ) RSP 143
It O =Y 0 1T = LIR30 ] oo )PP 143
A2 Non-terminal SYMDOIS ............ccuiiiiiiiciicieirec e 143 ((\\
A1.3 ProdUCHION FUIES ...t e e e e eaees CM@
A2 SEMANTICS ..eiiiie ittt e e ettt e e e ettt e e e eate e e e e anbe e e e e anbe e e e e anbeeeeearaeeeean e 6‘
ANNEX B (normative) Formal specifications of language elements............. a\) ................ 145
B.0 Programming modeI, .......................... 145
B.1 Common elemMentsS........coocuiiiiiiiiiieiiee e B Al a. ..................................... 145
B.1.1 Letters, digits and identifiers .........c.ccccevveriiiinnennn, \(\\ .............................................. 145
B.1.2 Constants.......cccccvvieeiiniiiieeecee o
B.1.2.1 Numericliterals .........ccccoeeiiiinnnnns
B.1.2.2 Character strings..........c......... JAD
B.1.2.3 Time literals.................... s
B.1.2.3.1 Duration.............. \\, SO
B.1.2.3.2 Time of day and d¥I@ ...........coooiiiiiiii e
B.1.3 Datatypes .o
B.1.3.1 Elementary datatypes ...,
B.1.3.2 GENEriC data tYPES ......euiiiiiiiie et e e a e e a e e e e
B.1.3.3 Derived data types ......ccooeiiiieeeee
B.1.4 Vari@bIEs ...
B.1.4.1 Directly represented variables
B.1.4.2 Multi-element VariabIes ...........ooo i
B.1.4.3 Declaration and initialization ...
B.1.5 Program organization UNitS ...,
B.1.5.1 FUNCHONS ...ttt e e e e e s e e s
B.1.5.2 FUNCLON DIOCKS ...t
B.1.5.3 PrOgrams. . ..o
B.1.6 Sequential function chart €leMEeNtS...........coooiiiiiiiii i 155
B.1.7 Configuration €IEMENTS ........cooiiiiiiii e 156
B.2 Language IL (INStruction LiSt) .......ccccuiiiiiiiie e 158
B.2.1 Instructions and Operands............ccooo i, 158
S @ oT=1 = | (o = TR 158
B.3 Language ST (StrUCIUred TEXL) .....cccccueiiiiiieee et e et e e e e e e e e e e e earraeeeeaeeeeeanes 159
B.3.1 EXPrESSIONS. ..o 159
B.3.2 StalEMENES ... erre e e 159
B.3.2.1 Assignment statements..............cc o, 160
B.3.2.2 Subprogram control StatemMeNtS............ccoiiiiiiiiiiii e 160
B.3.2.3 Selection statements.........oouiiiiiii e 160
B.3.2.4 Iteration Statements ..........oooi i 160
ANNEX C (normative) Delimiters and KEYWOIdS ...........ccuuviiiiieeiiiiiiieeee e e e eirreee e 161
ANNEX D (normative) Implementation-dependent parameters..........ccccceeeeviciiieeee e, 164
ANNEX E (normative) Error CONAItIONS ......cooccueviiiiiiec ettt ee e 166
ANNEX F (informative) EXAmIPIES .......cceeieiiiiiiiiiiiiee ettt e e e e e rraeeea s 168
F. 1 FUNCHON WEIGH ...ttt et ettt et e e st e e s eeennneeas 168
F.2 Function block CMD_MONITOR .......coiiiiiii e e e e 169
F.3 Function block FWD_REV_MON ......coiiiiiiiii e 172
F.4 Function BIOCK STACK TINT......ccciiiiiiiiiie it 177
F.5 Function block MIX_2 BRIX ...ttt e e e e e e e e 182
F.6 Analog SigNal PrOCESSING ....cciviiiieiiiiiie ittt ettt e e e s abee e e e aneeas 185
F.6.1 FUNCHON DIOCK LAGL .eueuiiii e e e e e e e e e e e e e e e e e e e e e e e aeaeaas 186
F.6.2 FUNCHON DIOCK DELAY ..uiiiiiiiiiiiiiiiiiie ettt e e et e e e e e st r e e e e e e e s nnnee s 186



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 6
EN 61131-3:2002

F.6.3 FUNCHON DIOCK AVERAGE ..ceiiiiiiiiitieieeee ettt ettt e e e e e s e et e e e e e e aneeee s 187
F.6.4 FUNCON DIOCK TNTEGRAT ...eiiiiiiieeiieeee e e et ee et e e e e ettt e e e e e e e e et eee e e e e e e e e anneeeeeaaeeeeaannneeees 187
F.6.5 FUNCtion DIOCK DERIVATIVE ...uuuutiiiiiieeiiaitieeieeeeesassisbese e e e e e e s amsste et e e e e e s s nbneeee e e e e e e sannneeees 188
F.6.6 FUNCON DIOCK HY STERES TS ..uuuuiiiiieiaeeiaateeieeee e e e e aaeateeeeeaaeeeaaamnneeeeaeaeeeaaannneeeeeaaaeeaaannneeees 188
F.6.7 FUNCHON DIOCK LIMITS_ALARM ....vvosseveveesseesenssssesesoesses s sesees e q‘s@
F.6.8 Structure ANALOG LIMITS .eotrireeerererereressaeeeesesesesesesesesesesesssssssssssssssssssssssseseses 6‘ 9
F.6.9 Function block ANALOG MONTTOR .....ueieiureiaueieaieeaieeesieeesieeeseeesnee e s s ge ......... 190
F.6.10 Function bloCK PID.......coiiiiiiiiiiiiiie e a o A 191
F.6.11 Function block DIFFEQ ......coiiiiiiiieiiiie e A WD . DR 192
F.6.12 Function BIOCK RAMP ......cocvoveveeeeeeeeceeeeieeee e s ¢ \(\ ....................................... 193
F.6.13 Function block TRANSFER.......cccuutrrreeieeiiiiiiiieeenn. G\\ ................................................. 194
F.7 Program GRAVEL.......cceeviuvieeeiiiieeenieeeee s N o 194
F.8 Program AGV ....ccccoeeeiiiiiiiiiieie e cegen NN Y 202
F.9 Use of enumerated data types ‘X .................................................................................. 205
F.10 Function block RTC (F\%gs" s 205
F.11 Function block ALRM XMWY ..o 205
ANNEX G (informative) Reference character Set...........cccoouiiiiiiiiiiiiii e 207
Annex ZA (normative) Normative references to international publications with their

corresponding European publiCationS ............oovvviiiiiiiiii 209
L T L= SO 210
Table 1 - Character Set fEatUreS........ocuii i e 22
Table 2 - ldentifier fFEAtUrES........ooo et e e e e e e 23
Table 3 - COMMENT FEATUIE.......coi i et e e e e e 24
Table 38 - Pragma fEatUre. ... 24
Table 4 - NUMEIIC OIS .........ooii e e e e 25
Table 5 - Character string literal features ... 26
Table 6 - Two-character combinations in character Strings ............evvviiiiiiiiiiiiiiiens 27
Table 7 - Duration literal features ......... .o 28
Table 8 - Date and time of day lIteralS...........cccuiriiiiii e 28
Table 9 - Examples of date and time of day literals ... 28
Table 10 - Elementary data tyPeS .......uuuuieieiiiiiiiiiiiiieiiieiee e ae e e seesaeseseessssesesnneeennees 29
Table 11 - Hierarchy of generic data types ... 31
Table 12 - Data type declaration features .............ueeeiiiiiiiiiiie e 32
Table 13 - Default initial values of elementary data types..........occeiiiiiiiii e 33
Table 14 - Data type initial value declaration features ...........ccccccoeiciiiiiii e 34
Table 15 - Location and size prefix features for directly represented variables............................. 36
Table 16a - Variable declaration KEYWOIAS ..............uuuuiieiuiiiiiiiiiiiiieieieieieieeereeereeeeereeerererererernrerenn 38
Table 16b - Usages of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT declarations............. 40
Table 17 - Variable type assignment features...........ooooiiiiiiiii i 40
Table 18 - Variable initial value assignment features. ... 42
Table 19 - Graphical negation of Boolean Signals ...............eeeeiieiiiiciiiiiiece e 46
Table 19a - Textual invocation of functions for formal and non-formal argument list ................... 48
Table 20 - Use of EN input and ENO OUEPUL ........ouuiiiiiiiiiiiiiieeie e e e e e e e e 49
Table 20a - FUNCLION fEALUIES .......cooiiiiiie e e 50
Table 21 - Typed and overloaded fUNCHONS ...........coiiiiiiiii e 52
Table 22 - Type conversion function fEAtUrES ............ooviiiiiiiiiie e 54

\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 7

EN 61131-3:2002
Table 23 - Standard functions of one numeric variable..............occiiiiiii e 56
Table 24 - Standard arithmetic FUNCHONS..............uuiiiiiiiieeeeeee e eees 57
Table 25 - Standard bit shift fUNCHONS ........oocuiiiii e 58 \
Table 26 - Standard bitwise Boolean fUNCLONS ................uuiiiiiiiiiiiiiiiie e ((\
Table 27 - Standard selection FUNCHONS.............c.cooiieeeeeeeeee oo 6 C&S@
Table 28 - Standard comparison functions. ... Q ............
Table 29 - Standard character string functions .............cccccoveeveieiiiicinnee, a,\) ..................... 62
Table 30 - Functions of time data types ............ccoocceiiiiiiinnee. oo IA. Q ............................... 63
Table 31 - Functions of enumerated data types..............., ‘\‘\ ............................................ 65
Table 32 - Examples of function block I/O variable QG ......................................................... 67
Table 33 - Function block declaration an AUUMES oottt e e e 70
Table 34 - Standard bistable functi X ............................................................................... 76
Table 35 - Standard edge &ncﬂon PIOCKS ... 77
Table 36 - Standard counter nctlon DIOCKS ... ettt 78
Table 37 - Standard timer function BIOCKS...........cueiiiiiiiii e 80
Table 38 - Standard timer function blocks - timing diagrams ..........cccooeeeiii e 81
Table 39 - Program declaration fEatUres............c..uviiii i 82
Table 40 - StEP fEALUIES ...t e e e e e e e e e e e e s e e e e e eanas 84
Table 41 - Transitions and transition CONAItIONS...........ooiiiiiiiiiiiii e 86
Table 42 - DECIaration Of ACHONS 2 .......c.oueeeeeeeeeeeeeeee et eeee ettt e et et e e et et eeee et etee s seeeee e e eneees 89
Table 43 - Step/action @sSOCIALION ..........coeiiiiiiiiieie e a e e 91
Table 44 - ACtion DIOCK fEALUMES ........uuiiiiiiiiiiiiiiieiitite ettt et e e e eesesesesesssesesesesesesssesarereeees 92
Table 45 - ACHON QUANIFIEIS .......oiiiii i e e e e e e e e e e e e s enraeaaeeeaaas 93
Table 45a - Action CONLrOl FEATUMES .........vuiiiiiiiiiiiiiieieiee ettt e be e aeaeresesesesasereseserssarererees 97
Table 46 - SEQUENCE EVOIULION ..ot e e e e e et e e e e e e s e e naraaeeas 100
Table 47 - Compatible SFC fEAtUrES.........uuiiiiiiiiiiiiiiiiieeee e erersrarararerersrerareres 107
Table 48 - SFC minimal compliance requireMents .............eoevieiiiiiiiiiieeee e 107
Table 49 - Configuration and resource declaration features............ccccooiiiiiiiiii e 111
Table 50 - TaSK fEALUIES........eeii ettt e e st e e s snbe e e e e snbeeeeseeeeeeas 115
Table 51a - Examples of inStruction fieldS.............uuiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e eeeeeeeaeaeees 123
Table 51b - Parenthesized expression features for IL language..........cccccceevviiiieeeee e, 124
Table 52 - Instruction LiSt OPErators ............ooi e 124
Table 53 - Function Block invocation and Function invocation features for IL language.............. 126
Table 54 - Standard Function Block input operators for IL language.............cccooeeeiiiiiieiiniienee 128
Table 55 - Operators of the ST [aNQUAGE............ueiiiiiiiiiieee e 130
Table 56 - ST language StatemMeENts ..........oooiiiiii e 131
Table 57 - Representation of lines and BIOCKS ............cocciiiiiiiiiiiicee e 135
Table 58 - Graphic execution control €leMENtS.............eviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeee e rereeereeeaaees 137
Table 59 - POWE TaIIS........eeeiieiii e e e e e e st eeeeee s 138
Table 60 - LINK ElEMENTS .........uuiiiiiiiiiiiiiiitei it e e e e baasaeasaaasasssssssssssssssssssssnneeeees 139
Table 61 - CONACES ? .......c.ovieeeiecee ettt ettt et s e se e aeeaene e 140
LI o] LN VA 7 oSSR SUPRI 141
I o) (I O B =1 41 (Y PSRRI 161
TabIe C.2 - KEYWOITS ....ceeiiiiiiee ittt e e st e e e aa bt e e e sabe e e e s aabaeeeesraeeeans 162
Table D.1 - Implementation-dependent parameters .............ouevviiiiiiiiiiiiiiiiiiieeeeeeeeee e 164
Table E.1 - Error CONAITIONS .......eeiiiiiiiiiiiiieeeeeee ettt eee et tevevetevesabebabebebasassssasssssssssssssssssssnreeeees 166



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 8

EN 61131-3:2002

Table G.1 - Character represSentationsS...........c.uuiiiiie i e a e 207
Table G.2 - Character @NCOAINGS ......oiouiiiiiiiii e e e e e sneeeea 208
Figure 1 - SOftware MOMEl ..........oooiiiiiiiie et e e e e e e e e sreeee e ((\
Figure 2 a) - Data flow connection within @ program.............ccccoiiiiiiie e C{@
Figure 2 b) - Communication via GLOBAL variables..........ccccceeveiiiiiiciiiieeee e, . e ...... f....16
Figure 2 c¢) - Communication function blocks ............ccccceeeiiiiiiiieeenc e, . \)Q ................ 17
Figure 2 d) - Communication via access paths .............cccec...e. oA . fg ............................... 17
Figure 3 - Combination of programmable controller Iangug\& (S 19
Figure 4 - Examples of function usage.....................a\.- G 44
Figure 5 - Use of formal argument Names... . NI P oo oo 47

Figure 6 - Examples of function declasal; A USAQE ..o 51
Figure 7 - Examples of expKgci @ﬁversion with overloaded functions............ccccccoeviivvieenn... 53
Figure 8 - Examples of exp:i\ﬁkype conversion with typed functions ...........ccoocciii i 53
Figure 9 - Function block instantiation examples .........cccoooooiiiiiioiiiic s 66
Figure 10 - Examples of function block declarations..............cccccoiiiiiiiiiieiieee e 69
Figure 11 a) - Graphical use of a function block name as an input variable.................cccccoveee... 72
Figure 11 b) - Graphical use of a function block name as an in-out variable................................ 73
Figure 11 c) - Graphical use of a function block name as an external variable ............................. 74
Figure 12 - Declaration and usage of in-out variables in function blocks............cccccceiiiinienn 75
Figure 14 - ACTION CONTROL function block - External interface (Not visible to the user).......... 94
Figure 15 a) - ACTION_CONTROL function block body with “final scan” logic..............cccccuvuneee.. 95
Figure 15 b) - ACTION_CONTROL function block body without “final scan” logic............c.cc..c.... 96
Figure 16 a) - Action control example - SFC representation............cccccvveeiieiiiiiciiiieeeee e, 97
Figure 16 b) - Action control example - functional equivalent.............cccccciiiii e 98
Figure 17 - Examples of SFC eVolution rUIES.............coooiiiiiiiiiiiece e 104
Figure 18 a) - Examples of SFC errors: an “unsafe” SFC.........cccoouiiiiiiiiie 105
Figure 18 b) - Examples of SFC errors: an “unreachable” SFC............cccccceiiiiiiiiieeee e 106
Figure 19 a) - Graphical example of a configuration ..............cccco i, 108
Figure 19 b) - Skeleton function block and program declarations for configuration exampile....... 109
Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features........................ 112
Figure 21 a) - Synchronization of function blocks with explicit task associations ....................... 119
Figure 21 b) - Synchronization of function blocks with implicit task associations ........................ 120
Figure 21 c) - Explicit task associations equivalent to figure 21 D) ........cccceiiiiiiiiiiie, 121
Figure 22 - EXIT statement @Xample ...... ..o 133
Figure 23 - Feedback path eXample........ ..o 136
Figure 24 - BoOolean OR €XAMPIES .....uuuiic s a e a e e e e e 142



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 9
EN 61131-3:2002
PROGRAMMABLE CONTROLLERS -

Part 3: Programming languages

o\
cO
S.
Q@)Qe
‘\‘\@:

This part of IEC 61131 specifies syntax and se 1 s‘g’programming languages for programmable
controllers as defined in part 1 of IEC 61

1 General

1.1 Scope

\31
.
The functions of program entr\'@wg onitoring, operating system, etc., are specified in Part 1 of
IEC 61131.

1.2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 60050 (all parts): International Electrotechnical Vocabulary (IEV)

IEC 60559:1989, Binary floating-point arithmetic for microprocessors systems

IEC 60617-12:1997, Graphical symbols for diagrams — Part 12: Binary logic elements
IEC 60617-13:1993, Graphical symbols for diagrams — Part 13: Analogue elements
IEC 60848:2002, GRAFCET specification language for sequential function charts
IEC 61131-1, Programmable controllers — Part 1. General information

IEC 61131-5, Programmable controllers — Part 5: Communications

ISO/AFNOR: 1989, Dictionary of computer science — The standardised vocabulary
ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

1.3 Definitions

For the purposes of this part of IEC 61131, the following definitions apply. Definitions applying to all
parts of IEC 61131 are given in part 1.
NOTE 1 Terms defined in this subclause are italicized where they appear in the bodies of definitions.

NOTE 2 The notation “(ISO)” following a definition indicates that the definition is taken from the
ISO/AFNOR Dictionary of computer science.

NOTE 3 The ISO/AFNOR Dictionary of computer science and the IEC 60050 should be consulted for
terms not defined in this standard.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 10

EN 61131-3:2002

1.3.1 absolute time: the combination of time of day and date information.

1.3.2 access path: the association of a symbolic name with a variable for the purpose of open
communication.

1.3.3 action: Boolean variable, or a collection of operations to be performed, 5%1(; 91 an
associated control structure, as specified in 2.6.4.

1.3.4 action block: graphical language element which utilizes a Bool@a tvarlable to determine
the value of a Boolean output variable or the enablin “ n action, according to a
predetermined control structure as defined in 2.6.4.5. W

1.3.5 aggregate: structured collection OWL ?ormlng a data type. (1SO)

1.3.6 argument: synonymous /nxkt ariable, output variable or in-out variable.

1.3.7 array: aggregate thmonmsts of data objects, with identical attributes, each of which may be
uniquely referenced by subscripting. (1SO)

1.3.8 assignment: mechanism to give a value to a variable or to an aggregate. (1SO)

1.3.9 based number: number represented in a specified base other than ten.

1.3.10 bistable function block: function block with two stable states controlled by one or more
inputs.

1.3.11 bit string: data element consisting of one or more bits.

1.3.12 body: that portion of a program organization unit which specifies the operations to be
performed on the declared operands of the program organization unit when its execution is invoked.

1.3.13 call: language construct for invoking the execution of a function or function block.
1.3.14 character string: aggregate that consists of an ordered sequence of characters.

1.3.15 comment: language construct for the inclusion of text in a program and having no impact on
the execution of the program. (ISO)

1.3.16 compile: to translate a program organization unit or data type specification into its machine
language equivalent or an intermediate form.

1.3.17 configuration: language element corresponding to a programmable controller system as
defined in IEC 61131-1.

1.3.18 counter function block: function block which accumulates a value for the number of changes
sensed at one or more specified inputs.

1.3.19 data type: set of values together with a set of permitted operations. (ISO)

1.3.20 date and time: the date within the year and the time of day represented as a single language
element.

1.3.21 declaration: the mechanism for establishing the definition of a language element. A
declaration normally involves attaching an identifier to the language element, and allocating attributes
such as data types and algorithms to it.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 11
EN 61131-3:2002

1.3.22 delimiter: character or combination of characters used to separate program language
elements.

1.3.23 direct representation: means of representing a variable in a programmable contr, \
program from which a manufacturer-specified correspondence to a physical or logical Iocati%

determined directly. 66 .

1.3.24 double word: data element containing 32 bits. a'\)

outputs of a network or function block, during program e

1.3.25 evaluation: the process of establishing a value fovsﬁ@e’sgn or a function, or for the

1.3.26 execution control element: A /a lement which controls the flow of program
execution.

AN
1.3.27 falling edge: the cw * to 0 of a Boolean variable.

1.3.28 function (procedure): program organization unit which, when executed, yields exactly one
data element and possibly additional output variables (which may be multi-valued, for example, an
array or structure), and whose invocation can be used in textual languages as an operand in an
expression.

1.3.29 function block instance (function block): instance of a function block type.

1.3.30 function block type: programmable controller programming language element consisting of:
1) the definition of a data structure partitioned into input, output, and internal variables; and

2) a set of operations to be performed upon the elements of the data structure when an instance of
the function block type is invoked.

1.3.31 function block diagram: network in which the nodes are function block instances, graphically
represented functions (procedures), variables, literals, and labels.

1.3.32 generic data type: data type which represents more than one type of data, as specified in
2.3.2.

1.3.33 global scope: scope of a declaration applying to all program organization units within a
resource or configuration.

1.3.34 global variable: variable whose scope is global.
1.3.35 hierarchical addressing: the direct representation of a data element as a member of a
physical or logical hierarchy, for example, a point within a module which is contained in a rack, which

in turn is contained in a cubicle, etc.

1.3.36 identifier: combination of letters, numbers, and underline characters, as specified in 2.1.2,
which begins with a letter or underline and which names a language element.

1.3.37 in-out variable: variable that is declared ina VAR _IN OUT...END VAR block.
1.3.38 initial value: the value assigned to a variable at system start-up.

1.3.39 input variable (input): variable which is used to supply an argument to a program
organization unit.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 12

EN 61131-3:2002

1.3.40 instance: individual, named copy of the data structure associated with a function block type or
program type, which persists from one invocation of the associated operations to the next.

1.3.41 instance name: identifier associated with a specific instance. 0((\\
1.3.42 instantiation: the creation of an instance. 66 ‘G
1.3.43 integer literal: l/iteral which directly represents a value of type SINps gNT, LINT, BOOL,

BYTE, WORD, DWORD, or LWORD, as defined in 2.3.1. -

1.3.44 invocation: the process of initiating the executj e operations specified in a program

organization unit. .
1.3.45 keyword: lexical unit that charaf\ s\ language element, for example, “IF”.
.

1.3.46 label: language c(\{\&\,% ‘naming an instruction, network, or group of networks, and
including an identifier.

1.3.47 language element: any item identified by a symbol on the left-hand side of a production rule
in the formal specification given in annex B of this standard.

1.3.48 literal: lexical unit that directly represents a value. (ISO)

1.3.49 local scope: the scope of a declaration or label applying only to the program organization unit
in which the declaration or label appears.

1.3.50 logical location: the location of a hierarchically addressed variable in a schema which may or
may not bear any relation to the physical structure of the programmable controller's inputs, outputs,
and memory.

1.3.51 long real: real number represented in a long word.

1.3.52 long word: 64-bit data element.

1.3.53 memory (user data storage): functional unit to which the user program can store data and
from which it can retrieve the stored data.

1.3.54 named element: element of a structure which is named by its associated identifier.
1.3.55 network: arrangement of nodes and interconnecting branches.

1.3.56 off-delay (on-delay) timer function block: function block which delays the falling (rising)
edge of a Boolean input by a specified duration.

1.3.57 operand: language element on which an operation is performed.
1.3.58 operator: symbol that represents the action to be performed in an operation.

1.3.59 output variable (output): variable which is used to return the resuli(s) of the evaluation of a
program organization unit.

1.3.60 overloaded: with respect to an operation or function, capable of operating on data of different
types, as specified in 2.5.1.4.

1.3.61 power flow: the symbolic flow of electrical power in a ladder diagram, used to denote the
progression of a logic solving algorithm.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 13
EN 61131-3:2002

1.3.62 pragma: language construct for the inclusion of text in a program organization unit which may
affect the preparation of the program for execution.

1.3.63 program (verb): to design, write, and test user programs. 0((\\

1.3.64 program organization unit: function, function block, or program. 6
NOTE This term may refer to either a type or an instance. ge

1.3.65 real literal: Jiteral representing data of type REAL or LREAL.

R

1.3.66 resource: language element corresponding to ay cessing function” and its “man-
machine interface” and “sensor and actuator interface fu@ |f any, as defined in IEC 61131-1.
1.3.67 retentive data: data stored |n that its value remains unchanged after a power

down / power up sequence.

1.3.68 return: language %1\ n W|th|n a program organization unit designating an end to the
execution sequences in the

1.3.69 rising edge: the change from 0 to 1 of a Boolean variable.
1.3.70 scope: that portion of a language element within which a declaration or label applies.

1.3.71 semantics: the relationships between the symbolic elements of a programming language and
their meanings, interpretation and use.

1.3.72 semigraphic representation: representation of graphic information by the use of a limited set
of characters.

1.3.73 single data element: data element consisting of a single value.
1.3.74 single-element variable: variable which represents a single data element.

1.3.75 step: situation in which the behavior of a program organization unit with respect to its inputs
and outputs follows a set of rules defined by the associated actions of the step.

1.3.76 structured data type: aggregate data type which has been declared using a STRUCT or
FUNCTION BLOCK declaration.

1.3.77 subscripting: mechanism for referencing an array element by means of an array reference
and one or more expressions that, when evaluated, denote the position of the element.

1.3.78 symbolic representation: the use of identifiers to name variables.

1.3.79 task: execution control element providing for periodic or triggered execution of a group of
associated program organization units.

1.3.80 time literal: literal representing data of type TIME, DATE, TIME OF DAY, Or
DATE AND TIME.

1.3.81 transition: the condition whereby control passes from one or more predecessor steps to one
or more successor steps along a directed link.

1.3.82 unsigned integer: integer literal not containing a leading plus (+) or minus (-) sign.

1.3.83 wired OR: construction for achieving the Boolean OR function in the LD language by
connecting together the right ends of horizontal connectives with vertical connectives.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 14

EN 61131-3:2002

1.4 Overview and general requirements

This part of IEC 61131 specifies the syntax and semantics of a unified suite of programmlng
languages for programmable controllers (PCs). These consist of two textual languages, IL Instru
List) and ST (Structured Text), and two graphical languages, LD (Ladder Diagram) and FBD@

Block Diagram).

programmable controller programs and function blocks. Also, confi elements are defined
which support the installation of programmable controller pr programmable controller

systems. ‘\
G

In addition, features are defined which facilit uhication among programmable controllers and
other components of automated syste
.

Sequential Function Chart (SFC) elements are defined for structuring t? gl organization of

The programming Ianguage\c@g@ Jefined in this part may be used in an interactive programming
environment. The specificatiyn*of such environments is beyond the scope of this standard; however,
such an environment shall be capable of producing textual or graphic program documentation in the
formats specified in this standard.

The material in this part is arranged in “bottom-up” fashion, that is, simpler language elements are
presented first, in order to minimize forward references in the text. The remainder of this subclause
provides an overview of the material presented in this part and incorporates some general
requirements.

1.4.1 Software model

The basic high-level language elements and their interrelationships are illustrated in figure 1. These
consist of elements which are programmed using the languages defined in this standard, that is,
programs and function blocks; and configuration elements, namely, configurations, resources, tasks,
global variables, access paths, and instance-specific initializations, which support the installation of
programmable controller programs into programmable controller systems.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 15

EN 61131-3:2002

CONFIGURATION

RESOURCE RESOURCE

TASK TASK TASK TAS e P°*

I \ I
I N \ 1

I 3

7

PROGRAM N AM PW

B SN

Py
GL [Fand DIRECTLY ?REPRESENTED VARIABLES

and INSTANCE-SPECIFIC | INITIALIZATIONS

A v

ACCESS PATHS

Communication function (See IEC 61131-5)

------ Execution control path

<@ or —P» Variable access paths

Function block

1 Variable

IEC 2468/02
NOTE 1 This figure is illustrative only. The graphical representation is not normative.

NOTE 2 In a configuration with a single resource, the resource need not be explicitly
represented.

Figure 1 - Software model

A configuration is the language element which corresponds to a programmable controller system as
defined in IEC 61131-1. A resource corresponds to a “signal processing function” and its “man-
machine interface” and “sensor and actuator interface” functions (if any) as defined in IEC 61131-1. A
configuration contains one or more resources, each of which contains one or more programs executed
under the control of zero or more tasks. A program may contain zero or more function blocks or other
language elements as defined in this part.

Configurations and resources can be started and stopped via the “operator interface”, “programming,
testing, and monitoring”, or “operating system” functions defined in IEC 61131-1. The starting of a
configuration shall cause the initialization of its global variables according to the rules given in 2.4.2,
followed by the starting of all the resources in the configuration. The starting of a resource shall cause
the initialization of all the variables in the resource, followed by the enabling of all the tasks in the
resource. The stopping of a resource shall cause the disabling of all its fasks, while the stopping of a
configuration shall cause the stopping of all its resources. Mechanisms for the control of fasks are
defined in 2.7.2, while mechanisms for the starting and stopping of configurations and resources via
communication functions are defined in IEC 61131-5.

S



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 16
EN 61131-3:2002

Programs, resources, global variables, access paths (and their corresponding access privileges), and
configurations can be loaded or deleted by the “communication function” defined in IEC 61131-1. The
loading or deletion of a configuration or resource shall be equivalent to the loading or deletion of all the \

elements it contains. O((\

Access paths and their corresponding access privileges are defined in 2.7.1.

The mapping of the language elements defined in this subclause on to co %‘objects is
defined in IEC 61131-5.

1.4.2 Communication model /ga'

Figure 2 illustrates the ways that values of variables can Qé}‘&municated among software elements.

As shown in figure 2 a), variable values withi m can be communicated directly by connection
of the output of one program eIementA iMput of another. This connection is shown explicitly in

(¢
graphical languages and implicit iﬂ anguages.

. ) 3
e
.
Variable values can be ¢ ?ated between programs in the same configuration via global
variables such as the variable x illustrated in figure 2 b). These variables shall be declared as GLOBAL
in the configuration, and as EXTERNAL in the programs, as specified in 2.4.3.

As illustrated in figure 2 c), the values of variables can be communicated between different parts of a
program, between programs in the same or different configurations, or between a programmable
controller program and a non-programmable controller system, using the communication function
blocks defined in IEC 61131-5 and described in 2.5.2.3.5. In addition, programmable controllers or
non-programmable controller systems can transfer data which is made available by access paths, as
illustrated in figure 2 d), using the mechanisms defined in IEC 61131-5.

PROGRAM A
FB1 FB2
FB_X FB_Y
a b

IEC 2469/02

Figure 2 a) - Data flow connection within a program

CONFIGURATION C
PROGRAM A PROGRAM B
VAR_EXTERNAL VAR_EXTERNAL
x: BOOL; x: BOOL;
END_VAR END_VAR
FB1 FB2
FB_X VAR _GLOBAL FB_Y
af—x x:BOOL: —— P x b
END_VAR

IEC 2470/02

Figure 2 b) - Communication via GLOBAL variables



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 17
EN 61131-3:2002

CONFIGURATION C

CONFIGURATION D

PROGRAM A
send1
SEND
FB1 SD1
FB X
a
%

Q0

.

revi PROGRA Wk\\
S

RCY
RD1 FB2
FB_Y
b

IEC 2471/02

Figure 2 c) - Communication function blocks

CONFIGURATION C
P1

PROGRAM A
FB1

FB_X

CONFIGURATION D

VAR_ACCESS
CSX: P1.Z : REAL READ_ONLY;

'CSX' =

PROGRAM B
TO_FB2 FB2
READ FB_Y
RD1 b
VAR_1

NOTE 1
NOTE 2

NOTE 3

NOTE 4

NOTE 5

IEC 2472/02

Figure 2 d) - Communication via access paths

resource.

This figure is illustrative only. The graphical representation is not normative.

In these examples, configurations C and D are each considered to have a single

The details of the communication function blocks are not shown in this figure. See
2.5.2.3.5and IEC 61131-5.

As specified in 2.7, access paths can be declared on directly represented variables,

global variables, or input, output, or internal variables of programs or function block

instances.

access paths for reading and writing of variables.

IEC 61131-5 specifies the means by which both PC and non-PC systems can use



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 18

EN 61131-3:2002

1.4.3 Programming model

The elements of programmable controller programming languages, and the subclauses in which they\

appear in this part, are classified as follows: 0((\

Data types (2.3)

Variables (2.4) ge‘j *

Program organization units (2.5) a
Functions (2.5.1) ’g
Function blocks (2.5.2) ‘\a
Programs (2.5.3) \g\

Sequential Function Chart ( Cg ents (2.6)

Configuration eleme
Global va '

1)..

Re e .
m@paths (2.7.1)
sks (2.7.2)

As shown in figure 3, the combination of these elements shall obey the following rules:

1)

2)

3)

4)

5)

Derived data types shall be declared as specified in 2.3.3, using the standard data types specified
in 2.3.1 and 2.3.2 and any previously derived data types.

Derived functions can be declared as specified in 2.5.1.3, using standard or derived data types,
the standard functions defined in 2.5.1.5, and any previously derived functions. This declaration
shall use the mechanisms defined for the IL, ST, LD or FBD language.

Derived function blocks can be declared as specified in 2.5.2.2, using standard or derived data
types and functions, the standard function blocks defined in 2.5.2.3, and any previously derived
function blocks. This declaration shall use the mechanisms defined for the IL, ST, LD, or FBD
language, and can include Sequential Function Chart (SFC) elements as defined in 2.6.

A program shall be declared as specified in 2.5.3, using standard or derived data types, functions,
and function blocks. This declaration shall use the mechanisms defined for the IL, ST, LD, or FBD
language, and can include Sequential Function Chart (SFC) elements as defined in 2.6.

Programs can be combined into configurations using the elements defined in 2.7, that is, global
variables, resources, tasks, and access paths.

Reference to “previously derived” data types, functions, and function blocks in the above rules is
intended to imply that once such a derived element has been declared, its definition is available, for
example, in a “library” of derived elements, for use in further derivations. Therefore, the declaration of
a derived element type shall not be contained within the declaration of another derived element type.

A programming language other than one of those defined in this standard may be used in the
declaration of a function or function block. The means by which a user program written in one of the
languages defined in this standard invokes the execution of, and accesses the data associated with,
such a derived function or function block shall be as defined in this standard.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 19

EN 61131-3:2002

LIBRARY ELEMENTS

PRODUCTIONS

DERIVED ELEMENTS

1 .
DATA TYPES M Derived OKC
Standard (See 2.3.1, 2.3.2) B Declaration (See 2.3.3) CJ
Derived @ *
Y@\ 75
s ]
) . a( g&
FUNCTIONS Declaration (S \@ Derived
Standard_ (See2.5.1.5) k— P IL, ST, L, - functions
Derived H
.
.
FUNCTION BLOCKS \({\’&) Declrafion (See 2.5:2.2) Derived
Standard (See 2.5.2.3) SFC elements (See 2.6) | P funtion
OTHERS ocks
: 4)
Declaration (See 2.5.3)
IL, ST, LD, FBD -~ PROGRAM
SFC elements (See 2.6)
PROGRAMS
(See 2.5.3)
5
\ Declaration (See 2.7.1) )
Global variables (See 2.7.1) —J=| CONFIGURATION
Access paths (See 2.7.1)
Tasks (See 2.7.2
RESOURCES Y ( :
(See 2.7.1)
IEC 2473/02
NOTE 1 The parenthesized numbers (1) to (5) refer to the corresponding paragraphs in 1.4.3.

NOTE 2

Data types are used in all productions. For clarity, the corresponding linkages are
omitted in this figure.

Figure 3 - Combination of programmable controller language elements

1.5 Compliance

LD - Ladder Diagram (4.2)

FBD - Function Block Diagram (4.3)

IL - Instruction List (3.2)

ST - Structured Text (3.3)

OTHERS - Other programming languages (1.4.3)

This subclause defines the requirements which shall be met by programmable controller systems and
programs which claim compliance with this part of IEC 61131.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 20
EN 61131-3:2002

1.5.1 System compliance

A programmable controller system, as defined in IEC 61131-1, which claims to comply, wholl(q\\
partially, with the requirements of this part of IEC 61131 shall do so only as described below.

A compliance statement shall be included in the documentation accompanying % or shall be
produced by the system itself. The form of the compliance statement shall

“This system complies with the requirements of IEWB or the following language

features:”,
followed by a set of compliance tables in the fgll ormat.
AN
\\\\Q * Table title
Table No. Feature No. Features description

Table and feature numbers and descriptions are to be taken from the tables given in the relevant
subclauses of this part of IEC 61131. Table titles are to be taken from the following table.

Table title For features in:
Common elements Clause 2
Common textual elements Subclause 3.1
IL language elements Subclauses 3.2.1 to0 3.2.3
ST language elements Subclauses 3.3.1t0 3.3.2.4
Common graphical elements Subclause 4.1
LD language elements Subclause 4.2
FBD language elements Subclause 4.3

For the purposes of determining compliance, tables 9, 11, 13, 16a, 16b, 32, 38, 47, 48 and 51 shall
not be considered tables of features.

A programmable controller system complying with the requirements of this standard with respect to a
language defined in this standard:

a) shall not require the inclusion of substitute or additional language elements in order to
accomplish any of the features specified in this standard, unless such elements are identified
and treated as noted in rules €) and f) below;

b) shall be accompanied by a document that specifies the values of all implementation-
dependent parameters as listed in annex D;

c) shall be able to determine whether or not a user's language element violates any
requirement of this standard, where such a violation is not designated as an error in annex
E, and report the result of this determination to the user. In the case where the system does
not examine the whole program organization unit, the user shall be notified that the
determination is incomplete whenever no violations have been detected in the portion of the
program organization unit examined,;



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 21
EN 61131-3:2002

d) shall treat each user violation that is designated as an error in annex E in at least one of the
following ways:

1) there shall be a statement in an accompanying document that the error |s«\\
reported,;

2) the system shall report during preparation of the progra |on that an
occurrence of that error is possible;

3) the system shall report the error during prepas: “@(Qrogram for execution;

4) the system shall report the erro uﬁg execution of the program and initiate

appropriate system- or user- ror handling procedures;
and if any violations t re\c\e&gnated as errors are treated in the manner described in
d)1) above, then rencmg each such treatment shall appear in a separate section

of the accompanyi ocument;

e) shall be accompanied by a document that separately describes any features accepted by the
system that are prohibited or not specified in this standard. Such features shall be described
as being "extensions to the <language> language as defined in IEC 61131-3";

f) shall be able to process in a manner similar to that specified for errors any use of any such
extension;

g) shall be able to process in a manner similar to that specified for errors any use of one of the
implementation-dependent features specified in annex D;

h) shall not use any of the standard data type, function or function block names defined in this
standard for manufacturer-defined features whose functionality differs from that described in
this standard,unless such features are identified and treated as noted in rules e) and f)
above;

i) shall be accompanied by a document defining, in the form specified in annex A, the formal
syntax of all textual language elements supported by the system;

i) shall be capable of reading and writing files containing any of the language elements defined
as alternatives in the production library element declaration in B.O, in the syntax
defined in requirement i) above, encoded according to the “ISO-646 IRV” given as table 1 -
Row 00 of ISO/IEC 10646-1.

The phrase “be able t0” is used in this subclause to permit the implementation of a software switch
with which the user may control the reporting of errors.

In cases where compilation or program entry is aborted due to some limitation of tables, etc., an
incomplete determination of the kind “no violations were detected, but the examination is incomplete”
will satisfy the requirements of this subclause.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 22

EN 61131-3:2002

1.5.2 Program compliance

A programmable controller program complying with the requirements of IEC 61131-3: \
a) shall use only those features specified in this standard for the particular language u@@((\
b) shall not use any features identified as extensions to the language; \)ges *

c) shall not rely on any particular interpretation of implementéti?@ ndent features.
The results produced by a complying program shall be hen processed by any complying
system which supports the features used by the g Y such results are influenced by program
execution timing, the use of implementati dent features (as listed in annex D) in the
program, and the execution of error har\ f
.

.
2 Common elements \’\Q

This clause defines textuaN 2nd graphic elements which are common to all the programmable
controller programming languages specified in this Part of IEC 61131.

—
[0}
o
C
=
[0}
()

2.1 Use of printed characters

2.1.1 Character set

Textual languages and textual elements of graphic languages shall be represented in terms of the
“ISO-646 IRV” given as table 1 - Row 00 of ISO/IEC 10646-1.

The use of characters from additional character sets, for example, the “Latin-1 Supplement” given as
table 2 - Row 00 of ISO/IEC 10646-1, is a typical extension of this standard. The encoding of such
characters shall be consistent with ISO/IEC 10646-1.
The required character set consists of all the characters in columns 002 through 007 of the “ISO-646
IRV” as defined above, except for lower-case letters.

Table 1 - Character set features

No. Description

2 Lower case characters®

3a Number sign (#) OR
3b | Pound sign (£)

4a Dollar sign (s) OrR
4b | Currency sign (=)

5a Vertical bar (|) OR
5b Exclamation mark (!)

NOTE The feature numbering in this table is such as to maintain consistency with the first
edition of IEC 61131-3,.

@ When lower-case letters (feature 2) are supported, the case of letters shall not be
significant in language elements except within comments as defined in 2.1.5, string literals
as defined in 2.2.2, and variables of type STRING and WSTRING as defined in 2.3.1.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 23
EN 61131-3:2002

2.1.2 Identifiers

An identifier is a string of letters, digits, and underline characters which shall begin with a letter or\

underline character. 0((\

The case of letters shall not be significant in identifiers, for example, the identifiers % ggtD, and
aBCd shall be interpreted identically. \)gé

Underlines shall be significant in identifiers, for example, 2 BCD d@'shall be interpreted as
different identifiers. Multiple leading or multiple embedded und; %are Ot allowed; for example, the
character sequences _ LIM SW5 and LIM SW5 ar lid identifiers. Trailing underlines are
not allowed; for example, the character sequence SN~ is not a valid identifier.

At least six characters of uniquenes‘s supported in all systems which support the use of
identifiers, for example, ABCDE ke hterpreted as different from ABCDEZ in all such systems. The
maximum number of chara ed in an identifier is an implementation-dependent parameter.
Identifier features and examples are shown in table 2.

Table 2 - Identifier features

No. Feature description Examples
1 Upper case and numbers IW215 IW215Z QX75 IDENT
2 Upper and lower case, numbers, All the above plus:
embedded underlines LIM SW 5 LimSw5 abcd ab_Cd
3 Upper and lower case, numbers, All the above plus: MAIN 12V7
leading or embedded underlines

2.1.3 Keywords

Keywords are unique combinations of characters utilized as individual syntactic elements as defined in
annex B. All keywords used in this standard are listed in annex C. Keywords shall not contain
imbedded spaces. The case of characters shall not be significant in keywords; for instance, the
keywords “FOR” and “for” are syntactically equivalent. The keywords listed in annex C shall not be
used for any other purpose, for example, variable names or extensions as defined in 1.5.1.

NOTE National standards organizations can publish tables of translations of the keywords given
in
annex C.

2.1.4 Use of white space

The user shall be allowed to insert one or more characters of “white space” anywhere in the text of
programmable controller programs except within keywords, literals, enumerated values, identifiers,
directly represented variables as described in subclause 2.4.1.1, or delimiter combinations (for
example, for comments as defined in 2.1.5). “White space” is defined as the SPACE character with
encoded value 32 decimal, as well as non-printing characters such as tab, newline, etc. for which no
encoding is given in IEC/ISO 10646-1.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 24

EN 61131-3:2002

2.1.5 Comments

“(*” and “x)”, respectively, as shown in table 3. Comments shall be permitted anywhere in
program where spaces are allowed, except within character string literals as definedG@ 2.
Comments shall have no syntactic or semantic significance in any of the Ianguagt@ inde in this

User comments shall be delimited at the beginning and end by the special character combinations\

standard.

The use of nested comments, for example, (* (* NESTED *) *),@abe treated as an error
according to the provisions of 1.5.1 d). '\‘\a

The maximum number of characters allowed in :gn ent is an implementation-dependent

parameter.
AN
“\\Qﬁ:\ble 3 - Comment feature

\J
No. | Feature description Example
1 Comments (*****************************)
(* A framed comment *)
(*****************************)

NOTE The example given above represents three separate comments.

2.1.6 Pragmas

As illustrated in table 3 a), pragmas shall be delimited at the beginning and end by curly brackets " {"
and "}", respectively. The syntax and semantics of particular pragma constructions are
implementation dependent. Pragmas shall be permitted anywhere in the program where spaces are
allowed, except within character string literals as defined in 2.2.2.

NOTE Curly brackets inside a comment have no semantic meaning; comments inside curly
brackets may or may not have semantic meaning depending on the implementation.

Table 3 a) - Pragma feature

No. | Feature description Examples

1 Pragmas {VERSION 3.1}
{AUTHOR JHC}
{x := 256, y := 384}

2.2 External representation of data

External representations of data in the various programmable controller programming languages shall
consist of numeric literals, character strings, and time literals.

2.2.1 Numeric literals

There are two classes of numeric literals: integer literals and real literals. A numeric literal is defined
as a decimal number or a based number. The maximum number of digits for each kind of numeric
literal shall be sufficient to express the entire range and precision of values of all the data types which
are represented by the literal in a given implementation.

Single underline characters () inserted between the digits of a numeric literal shall not be significant.
No other use of underline characters in numeric literals is allowed.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 25
EN 61131-3:2002

Decimal literals shall be represented in conventional decimal notation. Real literals shall be
distinguished by the presence of a decimal point. An exponent indicates the integer power of ten by
which the preceding number is to be multiplied to obtain the value represented. Decimal literals and
their exponents can contain a preceding sign (+ or -). ((\\

Integer literals can also be represented in base 2, 8, or 16. The base shall be in dw&n. For

base 16, an extended set of digits consisting of the letters A through F s d, with the
conventional significance of decimal 10 through 15, respectively. bers shall not
contain a leading sign (+ or -).

o
Boolean data shall be represented by integer Iiteralse(u\\lgvalue zero (0) or one (1), or the
keywords FALSE or TRUE, respectively. .
Numeric literal features and examples‘d(\ in table 4.
The data type of a boolea ﬁ ri‘c literal can be specified by adding a type prefix to the literal,
consisting of the name of aM €lementary data type and the '# sign. For examples see feature 9 in

table 4.

Table 4 - Numeric literals

No. Feature description Examples
1 |Integer literals -12 0 123 456 +986
2 |Real literals -12.0 0.0 0.4560 3.14159 26

-1.34E-12 or -1.34e-12
3 | Real literals with exponents 1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

4 |Base 2 literals 2#1111 1111 (255 decimal)
2#1110 0000 (224 decimal)

5 |Base 8 literals 8#377 (255 decimal)
8#340 (224 decimal)

6 |Base 16 literals 16#FF or 16#ff (255 decimal)
16#E0 or 16#e0 (224 decimal)

7 |Boolean zero and one 0 1

8 |Boolean FALSE and TRUE FALSE TRUE

9 |Typed literals DINT#5 (DINT representation of 5)

UINT#16#9AF (UINT representation of the hexadecimal value 9AF )

BOOL#0 BOOL#1 BOOL#TRUE BOOL#FALSE

NOTE The keywords FALSE and TRUE correspond to Boolean values of 0 and 1, respectively.

2.2.2 Character string literals
Character string literals include single-byte or double-byte encoded characters.

A single-byte character string literal is a sequence of zero or more characters from Row 00 of the
ISO/IEC 10646-1 character set prefixed and terminated by the single quote character (‘). In single-
byte character strings, the three-character combination of the dollar sign ($) followed by two
hexadecimal digits shall be interpreted as the hexadecimal representation of the eight-bit character
code, as shown in feature 1 of table 5.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 26

EN 61131-3:2002

A double-byte character string literal is a sequence of zero or more characters from the ISO/IEC
10646-1 character set prefixed and terminated by the double quote character ("). In double-byte
character strings, the five-character combination of the dollar sign ($) followed by four hexadecimal
digits shall be interpreted as the hexadecimal representation of the sixteen-bit character cod \
shown in feature 2 of table 5. 0

Two-character combinations beginning with the dollar sign shall be interpret@@@%n‘in table 6

when they occur in character strings.
P
\\

Table 5 - Character‘\s i jperal features
o .

No. Example \ \\N“\‘ Explanation
1 ‘\"0 S‘n‘glé-byte character strings
Yoy
v Eﬁ}ty string (length zero)
- String of length one containing the single character A

v String of length one containing the “space” character

R String of length one containing the “single quote” character

AR String of length one containing the “double quote” character

"SRSL' String of length two containing CR and LF characters
's0A’ String of length one containing the LF character
1$51.00" String of length five which would print as “$1.00”
VAR Equivalent strings of length two
"5C4SCB'

2 Double-byte character strings

nn Empty string (length zero)

"A" String of length one containing the single character A

non String of length one containing the “space” character

nrn String of length one containing the “single quote” character

ngn String of length one containing the “double quote” character
"SRSL" String of length two containing CR and LF characters
"$51.00" String of length five which would print as “$1.00”
"AE" Equivalent strings of length two
"$00C4500CB"

3 Single-byte typed string literals

STRING# 'OK' String of length two containing two single-byte characters

4 Double-byte typed string literals

WSTRING#'0K' |String of length two containing two double-byte characters

NOTE If a particular implementation supports feature #4 but not feature #2, the
implementor may specify implementation-dependent syntax and semantics for
the use of the double-quote character.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 27

EN 61131-3:2002

Table 6 - Two-character combinations in character strings

o |
No. Combination Interpretation when printed pﬂ(\
. \J
2 | ss Dollar sign "‘es .
3 | s Single quote o a\)\b
4 SL or $1 Line feed . "‘a"g
5 $N or $n Newline C \\‘
L WA 4
6 $P or $p Form feed (page .
_ t\l\N
7 | $R or sr Carnagqv%
8 ST or $t &X) o
9 $m D‘oTJbIe quote
NOTE 1 The “newline” character provides an implementation-independent means of defining
the end of a line of data for both physical and file I/O; for printing, the effect is that of
ending a line of data and resuming printing at the beginning of the next line.
NOTE 2 The $' combination is only valid inside single quoted string literals.
NOTE 3 The $" combination is only valid inside double quoted string literals.

2.2.3 Time literals

The need to provide external representations for two distinct types of time-related data is recognized:
duration data for measuring or controlling the elapsed time of a control event, and time of day data
(which may also include date information) for synchronizing the beginning or end of a control event to
an absolute time reference.

Duration and time of day literals shall be delimited on the left by the keywords defined in 2.2.3.1 and
223.2.

2.2.3.1 Duration

Duration data shall be delimited on the left by the keyword T# or TIME#. The representation of
duration data in terms of days, hours, minutes, seconds, and milliseconds, or any combination thereof,
shall be supported as shown in table 7. The least significant time unit can be written in real notation
without an exponent.

The units of duration literals can be separated by underline characters.

“Overflow” of the most significant unit of a duration literal is permitted, for example, the notation
T#25h_15mis permitted.

Time units, for example, seconds, milliseconds, etc., can be represented in upper- or lower- case
letters.

As illustrated in table 7, both positive and negative values are allowed for durations.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 28
EN 61131-3:2002

Table 7 - Duration literal features

No. Feature description Examples

Duration literals without underlines: T#14ms T#-14ms T#14.7s T#14. 7m Q(\\
1a short prefix T#14.7h  t#14.7d  t#25hl15m
t#5d14h12m18s3.5ms

1b long prefix TIME#14ms  TIME#- 14ma\) 14.7s
Duration literals with underlines: . &
2a short prefix t#25h 1 12m 18s_3.5ms

2b long prefix T #%@}lgn‘l
¥ #5d 14h 12m 18s 3.5ms
2.2.3.2 Time of day and date\\p \\

Prefix keywords for time of d ; and date literals shall be as shown in table 8. As illustrated in table 9,
representation of time-of-day and date information shall be as specified by the syntax given in

B.1.2.3.2.
Table 8 - Date and time of day literals
No. Feature description Prefix Keyword
1 Date literals (long prefix) DATE#
2 Date literals (short prefix) D#
3 Time of day literals (long prefix) TIME OF DAY#
4 Time of day literals (short prefix) TOD#
5 Date and time literals (long prefix) DATE AND TIME#
6 Date and time literals (short prefix) DT#
Table 9 - Examples of date and time of day literals
Long prefix notation Short prefix notation
DATE#1984-06-25 D#1984-06-25
date#1984-06-25 d#1984-06-25
TIME OF DAY#15:36:55.36 TOD#15:36:55.36
time of day#15:36:55.36 tod#15:36:55.36
DATE AND TIME#1984-06-25-15:36:55.36 DT#1984-06-25-15:36:55.36
date and time#1984-06-25-15:36:55.36 dt#1984-06-25-15:36:55.36

2.3 Data types

A number of elementary (pre-defined) data types are recognized by this standard. Additionally,
generic data types are defined for use in the definition of overloaded functions (see 2.5.1.4). A
mechanism for the user or manufacturer to specify additional data types is also defined.



2.3.1 Elementary data types

S-
Table 10 - Elementary data types ge
y yp ) ()\&

Page 29
EN 61131-3:2002

The elementary data types, keyword for each data type, number of bits per data element, and r%\
of values for each elementary data type shall be as shown in table 10.

cO

No. Keyword Data typ ,QU" N?
1 BOOL r,w&gaﬁgv 1h
2 SINT a SMort integer 8°
3 INT A\ \‘““ Integer 16°
4 | pINT \r\'\i\.@ A Double integer 32°
5 LINT \) Long integer 64°
6 | usInt Unsigned short integer 8¢
7 | vint Unsigned integer 16¢
8 | upInt Unsigned double integer 32¢
9 | unint Unsigned long integer 64°
10 | REAL Real numbers 32°
11 | LReAL Long reals 64
12 TIME Duration P
13 | paTE Date (only) P
14 TIME OF DAY Or TOD Time of day (only) P
15 DATE AND TIME Or DT Date and time of Day --P
16 STRING Variable-length single-byte character string g'e
17 | BYIE Bit string of length 8 gle
18 | worD Bit string of length 16 1649
19 | DworD Bit string of length 32 3219
20 | mworD Bit string of length 64 649
21 WSTRING Variable-length double-byte character string 169

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 30

EN 61131-3:2002

Table 10 - Elementary data types

® The range of values and precision of representation in these data types is implementatio

dependent.
. | | | 65

The range of values for variables of this data type is from - (2"*) \SQ

° Entries in this column shall be interpreted as specified in the footnotes. ‘ \

4 The range of values for variables of this data type is from 0 to ( g
I

° The range of values for variables of this data type sh II n IEC 60559 for the

basic single width floating-point format.

" The range of values for variables of this dat shaII be as defined in IEC 60559 for the

basic double width floating-point f
9 A numeric range of value, ¥ ‘qit apply to this data type.

" The possible values oNy [&s of this data type shall be 0 and 1, corresponding to the
keywords FALSE and TRUE, respectively.

' The value of N indicates the number of bits/character for this data type.

I The value of N indicates the number of bits in the bit string for this data type.

2.3.2 Generic data types

In addition to the data types shown in table 10, the hierarchy of generic data types shown in table 11
can be used in the specification of inputs and outputs of standard functions and function blocks (see
subclause 2.5.1.4). Generic data types are identified by the prefix “ANY”. The use of generic data

types is subject to the following rules:

1)

2)

3)

4)

Generic data types shall not be used in user-declared program organization units as defined in
2.5

The generic type of a subrange derived type (feature 3 of table 12) shall be ANY INT.

The generic type of a directly derived type (feature 1 of table 12) shall be the same as the generic

type of the elementary type from which it is derived.

The generic type of all other derived types defined in table 12 shall be ANY DERIVED.




Page 31
EN 61131-3:2002

Table 11 - Hierarchy of generic data types

ANY

ANY DERIVED (Derived data types - see preceding text) ((\\
¥

ANY ELEMENTARY

ANY MAGNITUDE 6
ANY NUM e

ANY REAL
LREAL ga'
REAL . a"
ANY INT X\\(\
LINT, DINT, INT @
uRIt

ULINT, N, USINT
TIME \
ANY BIT,~"* \
WWORD, WORD, BYTE, BOOL
ANY BYRING
STRING
WSTRING
ANY DATE

DATE AND TIME
DATE, TIME OF DAY

2.3.3 Derived data types
2.3.3.1 Declaration

Derived (i.e., user- or manufacturer-specified) data types can be declared using the
TYPE...END TYPE textual construction shown in table 12. These derived data types can then be
used, in addition to the elementary data types defined in 2.3.1, in variable declarations as defined in
2.4.3.

An enumerated data type declaration specifies that the value of any data element of that type can only
take on one of the values given in the associated list of identifiers, as illustrated in table 12. The
enumeration list defines an ordered set of enumerated values, starting with the first identifier of the list,
and ending with the last. Different enumerated data types may use the same identifiers for
enumerated values. The maximum allowed number of enumerated values is an implementation-
dependent parameter.

To enable unique identification when used in a particular context, enumerated literals may be qualified
by a prefix consisting of their associated data type name and the '#' sign, similar to typed literals
defined in 2.2.1. Such a prefix shall not be used inside an enumeration list. It is an error if sufficient
information is not provided in an enumerated literal to determine its value unambiguously.

A subrange declaration specifies that the value of any data element of that type can only take on
values between and including the specified upper and lower limits, as illustrated in table 12. It is an
error if the value of a value of a subrange type falls outside the specified range of values.

A STRUCT declaration specifies that data elements of that type shall contain sub-elements of specified
types which can be accessed by the specified names. For instance, an element of data type
ANALOG CHANNEL CONFIGURATION as declared in table 12 will contain a RANGE sub-element of
type ANALOG SIGNAL RANGE, a MIN SCALE sub-element of type ANALOG DATA, and a MAX SCALE
element of type ANALOG DATA. The maximum number of structure elements, the maximum amount of
data that can be contained in a structure, and the maximum number of nested levels of structure
element addressing are implementation-dependent parameters.

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 32

EN 61131-3:2002

An ARRAY declaration specifies that a sufficient amount of data storage shall be allocated for each
element of that type to store all the data which can be indexed by the specified index subrange(s).
Thus, any element of type ANALOG 16 INPUT CONFIGURATION as shown in table 12 contains
(among other elements) sufficient storage for 16 CHANNEL elements of
ANALOG CHANNEL CONFIGURATION. Mechanisms for access to array elements are t;
2.41.2. The maximum number of array subscripts, maximum array size and m nge of
subscript values are implementation-dependent parameters. \)g

2.3.3.2 Initialization g

QE; \) the first identifier in the associated
ent operator “:=". For instance, as shown in
fault initial values of elements of data types
L RANGE are SINGLE ENDED and UNIPOLAR 1 5V,

The default initial value of an enumerated data ty
enumeration list, or a value specified by the
table 12, No.2, and table 14, No
ANALOG SIGNAL TYPE and ANA @ls
respectively. *

For data types with subrangas, the default initial values shall be the first (lower) limit of the subrange,
unless otherwise specified by an assignment operator. For instance, as declared in table 12, the
default initial value of elements of type ANALOG DATA is -4095, while the default initial value for the
FILTER PARAMETER sub-element of elements of type ANALOG 16 INPUT CONFIGURATION is zero.
In contrast, the default initial value of elements of type ANALOG DATAZ as declared in table 14 is zero.

For other derived data types, the default initial values, unless specified otherwise by the use of the
assignment operator “: =" in the TYPE declaration, shall be the default initial values of the underlying
elementary data types as defined in table 13. Further examples of the use of the assignment operator
for initialization are given in 2.4.2.

The default maximum length of elements of type STRING and WSTRING shall be an implementation-
dependent value unless specified otherwise by a parenthesized maximum length (which shall not
exceed the implementation-dependent default value) in the associated declaration. For example, if
type STR10 is declared by

TYPE STR10 : STRING[10] := 'ABCDEF'; END TYPE
the maximum length, default initial value, and default initial length of data elements of type STR10 are

10 characters, 'ABCDEF', and 6 characters, respectively. The maximum allowed length of STRING
and WSTRING variables is an implementation-dependent parameter.

Table 12 - Data type declaration features

No. Feature/textual example

1 Direct derivation from elementary types, e.g.:
TYPE RU REAL : REAL ; END TYPE

2 Enumerated data types, e.g.:
TYPE ANALOG SIGNAL TYPE : (SINGLE ENDED, DIFFERENTIAL) ; END TYPE

3 Subrange data types, e.g.:
TYPE ANALOG DATA : INT (-4095..4095) ; END TYPE

4 Array data types, e.g.:

TYPE ANALOG 16 INPUT DATA : ARRAY [1..16] OF ANALOG DATA ; END TYPE




Page 33
EN 61131-3:2002

Table 12 - Data type declaration features

Structured data types, e.g.:
TYPE
ANALOG CHANNEL CONFIGURATION
STRUCT

RANGE : ANALOG_SIGNAL RANGE ; ’ga'
MIN SCALE : ANALOG DATA ; . a.

MAX SCALE : ANALOG DATA ; ‘\\(\

END STRUCT ; G

ANALOG 16 INPUT CONFIGURATION
STRUCT
SIGNAL TYPE : ‘G GNAL TYPE ;

No. Feature/textual example ’é‘\
5 <:S:S\

FILTERﬁPARﬁ\ SINT (0..99) ;
CHANNEL : A Y [1..16] OF ANALOG CHANNEL CONFIGURATION ;

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

END STRUCT ;
END TYPE
NOTE For examples of the use of these types in variable declarations, see 2.3.3.3, 2.4.1.2, and
table 17.
Table 13 - Default initial values of elementary data types
Data type(s) Initial value
BOOL, SINT, INT, DINT, LINT 0
USINT, UINT, UDINT, ULINT 0
BYTE, WORD, DWORD, LWORD 0
REAL, LREAL 0.0
TIME T#0S
DATE D#0001-01-01
TIME OF DAY TOD#00:00:00
DATE AND TIME DT#0001-01-01-00:00:00
STRING ''" (the empty string)
WSTRING "" (the empty string)




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 34

EN 61131-3:2002

Table 14 - Data type initial value declaration features

No. Feature/textual example

1 Initialization of directly derived types, e.g.:
TYPE FREQ : REAL := 50.0 ; END TYPE

o

50

2 Initialization of enumerated data types, e.g.: a'\)\b

TYPE ANALOG SIGNAL RANGE : ,g
(BIPOLAR 10V, (* =10 to +10 VDCG
UNIPOLAR 10V, (* 0 to +
UNIPOLAR 1 5V, (* + 1 ‘é! DC *
UNIPOLAR 0 5V, (% P+ 5 vVDC *
UNIPOLAR 4 20 MA, \\ 4 to +20 mADC

UNIPOLAR 0 2 0 to +20 mADC *
) = UNI%

END TYPE

*

3 Initialization of subrange data types, e.g.:
TYPE ANALOG DATAZ : INT (-4095..4095) := 0 ; END TYPE

4 Initialization of array data types, e.g.:
TYPE ANALOG 16 INPUT DATAI

ARRAY [1..16] OF ANALOG DATA := [8(-4095), 8(4095)] ;
END TYPE

5 Initialization of structured data type elements, e.g.:
TYPE ANALOG CHANNEL CONFIGURATIONI
STRUCT
RANGE : ANALOG SIGNAL RANGE ;
MIN SCALE : ANALOG DATA := -4095 ;
MAX SCALE : ANALOG DATA := 4095 ;
END_STRUCT ;
END_TYPE

6 Initialization of derived structured data types, e.g.:
TYPE ANALOG CHANNEL CONFIGZ
ANALOG CHANNEL CONFIGURATIONI
:= (MIN_SCALE := 0, MAX SCALE := 4000);
END_TYPE

2.3.3.3 Usage

The usage of variables which are declared (as defined in 2.4.3.1) to be of derived data types shall

conform to the following rules:

1) A single-element variable, as defined in 2.4.1.1, of a derived type, can be used anywhere that a

variable of its “parent's” type can be used, for example variables of the types

RU_REAL and

FREQ as shown in tables 12 and 14 can be used anywhere that a variable of type REAL could
be used, and variables of type ANALOG DATA can be used anywhere that a variable of type INT

could be used.

This rule can be applied recursively. For example, given the declarations below, t
of type R2 can be used anywhere a variable of type REAL can be used:

TYPE R1 : REAL := 1.0 ; END TYPE
TYPE R2 : Rl ; END TYPE
VAR R3: R2; END VAR

he variable R3



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 35

EN 61131-3:2002

2) An element of a multi-element variable, as defined in 2.4.1.2, can be used anywhere the
“parent” type can be used, for example, given the declaration of ANALOG 16 INPUT DATA in
table 12 and the declaration

VAR INS : ANALOG 16 INPUT DATA ; END VAR 0(0\

could be used.

This rule can also be applied recursively, for exam Ie(é the declarations of
ANALOG 16 INPUT CONFIGURATION, ANALOG CHAN URATION, and ANALOG -

DATA in table 12 and the declaration
%ION ; END VAR

VAR CONF : ANALOG 16 INPW :
the variable CONF.CHANN \\4 SCALE can be used anywhere that a variable of type
INT could be used. ‘\\6

2.4 Variables

the variables INS[1] through INS[16] can be used anywhere that a ae%f‘type INT

In contrast to the external representations of data described in 2.2, variables provide a means of
identifying data objects whose contents may change, for example, data associated with the inputs,
outputs, or memory of the programmable controller. A variable can be declared to be one of the
elementary types defined in 2.3.1, or one of the derived types which are declared as defined in
2.3.3.1.

2.4.1 Representation
2.4.1.1 Single-element variables

A single-element variable is defined as a variable which represents a single data element of one of the
elementary types defined in 2.3.1; a derived enumeration or subrange type as defined in 2.3.3.1; or a
derived type whose “parentage”, as defined recursively in 2.3.3.3, is traceable to an elementary,
enumeration or subrange type. This subclause defines the means of representing such variables
symbolically, or alternatively in a manner which directly represents the association of the data element
with physical or logical locations in the programmable controller's input, output, or memory structure.

Identifiers, as defined in 2.1.2, shall be used for symbolic representation of variables.

Direct representation of a single-element variable shall be provided by a special symbol formed by
the concatenation of the percent sign “%” (character code 037 decimal in table 1 - Row 00 of ISO/IEC
10646-1), a location prefix and a size prefix from table 15, and one or more unsigned integers,
separated by periods (.).

In the case that a directly represented variable is used in a location assignment to an internal variable
in the declaration part of a program or a function block type as defined in 2.4.3.1, an asterisk “*” shall
be used in place of the size prefix and the one or several unsigned integers in the concatenation to
indicate that the direct representation is not yet fully specified. The percent sign and the location prefix
1, @ orMfrom table 15 shall always be present in the direct representation.

In both cases, the use of this feature requires that the location of the variable so declared shall be fully
specified inside the VAR _CONFIG...END VAR construction of the configuration as defined in 2.7.1 for
every instance of the containing type.

It is an error if any of the full specifications in the VAR CONFIG...END VAR construction is missing
for any incomplete address specification expressed by the asterisk notation in any instance of
programs or function block types which contain such incomplete specifications.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-3:2002

EXAMPLES

%0x75 and Q75 Output bit 75 \
$IW215 Input word location 215 GO((\
$QB7 Output byte location 7 ges .

$MD4 8 Double word at memory location 48 6»\)
$IW2.5.7.1 See explanation below afg
$Q* Output at a not yet spec@(“&n
The manufacturer shall specify the correspo Stween the direct representation of a variable

and the physical or logical location of ed item in memory, input or output. When a direct
representation is extended with o) eger fields separated by periods, it shall be interpreted as
a hierarchical physical or IY@% &ss with the leftmost field representing the highest level of the
hierarchy, with successive wer levels appearing to the right. For instance, the variable
$IW2.5.7.1 may represent the first “channel” (word) of the seventh “module” in the fifth “rack” of the
second “I/O bus” of a programmable controller system.

The use of hierarchical addressing to permit a program in one programmable controller system to
access data in another programmable controller shall be considered a language extension.

The use of directly represented variables is permitted in function blocks as defined in 2.5.2, programs

as defined in 2.5.3, and in configurations and resources as defined in 2.7.1. The maximum number of
levels of hierarchical addressing is an implementation-dependent parameter.

Table 15 - Location and size prefix features for directly represented variables

No. Prefix Meaning Default data type
1 I Input location
2 Q Output location
3 M Memory location
4 X Single bit size BOOL
5 None Single bit size BOOL
9 B Byte (8 bits) size BYTE
7 W Word (16 bits) size WORD
8 D Double word (32 bits) | DWORD
slze
9 L Long (quad) word (64 | LWORD
bits) size
10 Use of an asterisk (*) to indicate a not yet specified
location (NOTE 2)
NOTE 1 National standards organizations can publish tables of translations of these
prefixes.
NOTE 2 Use of feature 10 in this table requires feature 11 of table 49 and vice versa.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 37

EN 61131-3:2002

2.4.1.2 Multi-element variables

The multi-element variable types defined in this standard are arrays and structures. GO((\

An array is a collection of data elements of the same data type referenced by q e subscr/pts
enclosed in brackets and separated by commas. In the ST language d subclause 3.3, a
subscript shall be an expression yielding a value corresponding to one o%g b-types of generic type

ANY INT as defined in table 11. The form of subscripts in Wﬁ e defined in 3.2, and the
graph|c languages defined in clause 4, is restricted to sin eht variables or integer literals.

An example of the use of array variables in the Qs e as defined in 3.3 is:
OUTARY [$MB6, SYM] := INA INARY [ - INARY[$MB6] * %IW62 ;
A structured variable is a ’&L T'nch is declared to be of a type which has previously been

specified to be a data structxe? I.e., a data type consisting of a collection of named elements.

An element of a structured variable shall be represented by two or more identifiers or array accesses
separated by single periods (.). The first identifier represents the name of the structured element, and
subsequent identifiers represent the sequence of component names to access the particular data
element within the data structure.

For instance, if the variable MODULE 5 CONFIG has been declared to be of type
ANALOG_ 16 INPUT CONFIGURATION as shown in table 12, the following statements in the ST
language defined in 3.3 would cause the value SINGLE ENDED to be assigned to the element
SIGNAL TYPE of the variable MODULE 5 CONFIG, while the value BIPOLAR 10V would be assigned
to the RANGE sub-element of the fifth CHANNEL element of MODULE 5 CONFIG:

MODULE 5 CONFIG.SIGNAL TYPE := SINGLE ENDED;
MODULE 5 CONFIG.CHANNEL[S5].RANGE := BIPOLAR 10V;

2.4.2 Initialization

When a configuration element (resource or configuration) is “started” as defined in 1.4.1, each of the
variables associated with the configuration element and its programs can take on one of the following
initial values:

- the value the variable had when the configuration element was “stopped” (a retained value);
- a user-specified initial value;
- the default initial value for the variable's associated data type.

The user can declare that a variable is to be retentive by using the RETAIN qualifier specified in
table 16 a), when this feature is supported by the implementation.

The initial value of a variable upon starting of its associated configuration element shall be determined
according to the following rules:

1) If the starting operation is a “warm restart” as defined in IEC 61131-1, the initial values of retentive
variables shall be their retained values as defined above.

2) If the operation is a “cold restart” as defined in IEC 61131-1, the initial values of retentive variables
shall be the user-specified initial values, or the default value, as defined in 2.3.3.2, for the
associated data type of any variable for which no initial value is specified by the user.

3) Non-retained variables shall be initialized to the user-specified initial values, or to the default value,
as defined in 2.3.3.2, for the associated data type of any variable for which no initial value is
specified by the user.

4) Variables which represent inputs of the programmable controller system as defined in IEC 61131-1
shall be initialized in an implementation-dependent manner.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 38

EN 61131-3:2002

2.4.3 Declaration

Each declaration of a program organization unit type (i.e., each declaration of a program, function, or
function block, as defined in 2.5) shall contain at its beginning at least one declaration part wip
specifies the types (and, if necessary, the physical or logical location) of the variables u
organization unit. This declaration part shall have the textual form of one of theé@g VAR,
VAR_INPUT, or VAR OUTPUT as defined in table 16 a), followed in the case Qf Zero or one
occurrence of the qualifiers RETAIN, NON RETAIN or the qualifier CO \é@d
VAR_INPUT or VAR _OUTPUT by zero or one occurrence of the
followed by one or more declarations separated by semi
END VAR. When a programmable controller supports t
variables, this declaration shall be accomplished i d;

in the case of
aj AIN or NON RETAIN,
d *erminated by the keyword
ation by the user of initial values for
ration part(s) as defined in this subclause.

Ta {S‘a‘)\-\Variable declaration keywords
&\

Keyword Variable usage
VAR Internal to organization unit
VAR _INPUT Externally supplied, not modifiable within organization unit
VAR OUTPUT Supplied by organization unit to external entities
VAR IN OUT Supplied by external entities - can be modified within organization unit
VAR _EXTERNAL Supplied by configuration via VAR GLOBAL (2.7.1)
Can be modified within organization unit
VAR GLOBAL Global variable declaration (2.7.1)
VAR ACCESS Access path declaration (2.7.1)
VAR TEMP Temporary storage for variables in function blocks and programs (2.4.3)
VAR CONFIG Instance-specific initialization and location assignment.
RETAIN® ©%© Retentive variables (see preceding text)
NON_RETAIN™ " %° Non-retentive variables (see preceding text)
CONSTANT? Constant (variable cannot be modified)
AT Location assignment (2.4.3.1)
NOTE 1 The usage of these keywords is a feature of the program organization unit or
configuration element in which they are used. Normative requirements for the use
of these keywords are given in 2.4.3.1, 2.4.3.2, 2.5 and 2.7.
NOTE 2 Examples of the use of VAR _IN OUT variables are given in figures 11b and 12.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 39

EN 61131-3:2002

Table 16 a) - Variable declaration keywords

described in 2.5.2.1. 0

® The RETAIN and NON_ RETAIN qualifiers may be used for variables declared iné% ‘CJ
VAR_INPUT, VAR OUTPUT, and VAR GLOBAL blocks but notin VAR I I5cks and

not for individual elements of structures. a
¢ Usage of RETAIN and NON_RETAIN for function block and rﬁgfgstances is allowed.
The effect is that all members of the instance are tre@ AIN or NON RETAIN,
except if:
.
- the member is explicitly declared a or NON_RETAIN in the function block or
program type definition; .

- the member itself is a rt block.

d Usage of RETAIN and GéN_RETAIN for instances of structured data types is allowed. The
effect is that all structure members, also those of nested structures, are treated as RETAIN
or NON RETAIN.

° Both RETAIN and NON_RETAIN are features. If a variable is neither explicitly declared as
RETAIN nor as NON_RETAIN the “warm start” behaviour of the variable is implementation
dependent.

Within function blocks and programs, variables can be declared in a VAR TEMP...END VAR
construction. These variables are allocated and initialized at each invocation of an instance of the
program organization unit, and do not persist between invocations.

The scope (range of validity) of the declarations contained in the declaration part shall be local to the
program organization unit in which the declaration part is contained. That is, the declared variables
shall not be accessible to other program organization units except by explicit argument passing via
variables which have been declared as inputs or outputs of those units. The one exception to this rule
is the case of variables which have been declared to be global, as defined in 2.7.1. Such variables
are only accessible to a program organization unit via a VAR EXTERNAL declaration. The type of a
variable declared in a VAR EXTERNAL block shall agree with the type declared in the VAR GLOBAL
block of the associated program, configuration or resource.

It shall be an error if:

e any program organization unit attempts to modify the value of a variable that has been declared
with the CONSTANT qualifier;

e a variable declared as VAR GLOBAL CONSTANT in a configuration element or program
organization unit (the “containing element”) is used in a VAR EXTERNAL declaration (without the
CONSTANT qualifier) of any element contained within the containing element as illustrated below.

The maximum number of variables allowed in a variable declaration block is an implementation-
dependent parameter.

@ The CONSTANT qualifier shall not be used in the declaration of function block instances as d(\\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 40

EN 61131-3:2002

Table 16 b) — Usages of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT declarations

Declaration in containing element Declaration in contained element Allowed? ‘d(\\
VAR GLOBAL X ... VAR EXTERNAL CONSTANT X... (,Y@U
VAR GLOBAL X ... VAR EXTERNAL X. :)Yes
VAR GLOBAL CONSTANT X ... VAR EXTERNAL CONSTANT a.\) I Yes
’
\ov N
VAR GLOBAL CONSTANT X VAR_EXTERNAL' é(\ 0]

G\

2.4.3.1 Type assignment

As shown in table 17, the V“ ! VAR construction shall be used to specify data types and
retentivity for directly repre € ariables. This construction shall also be used to specify data
types, retentivity, and (where'necessary, in programs and VAR GLOBAL declarations only) the physical
or logical location of symbolically represented single- or multi-element variables. The usage of the
VAR _INPUT, VAR OUTPUT, and VAR IN OUT constructions is defined in 2.5.

The assignment of a physical or logical address to a symbolically represented variable shall be
accomplished by the use of the AT keyword. Where no such assignment is made, automatic
allocation of the variable to an appropriate location in the programmable controller memory shall be
provided.

The asterisk notation (feature No. 10 in table 15) can be used in address assignments inside
programs and function block types to denote not yet fully specified locations for directly represented
variables.

Table 17 - Variable type assignment features

No. Feature/examples
1° Declaration of directly represented variables
VAR
AT %$TW6.2 : WORD; 16-bit string (note 2)
AT SMW6 : INT ; 16-bit integer, initial value = 0
END_ VAR
2° Declaration of directly represented retentive variables
VAR RETAIN At cold restart, will be initialized to a 16-bit string with value
AT $QW5 : WORD ; 16#0000
END_ VAR
3 Declaration of locations of symbolic variables
VAR GLOBAL Assigns input bit 27 to the Boolean variable
LIM SW_S5 AT %IX27 : BOOL; LIM SW_5 (note 2)
CONV_START AT %QX25 : BOOL; Assigns output bit 25 to the Boolean variable
CONV_START
TEMPERATURE AT %IW28: INT; Assigns input word 28 to the integer variable
TEMPERATURE (note 2)
VAR C2 AT %Q* : BYTE ; Assigns not yet located output byte to bitstring
END VAR variable C2 of length 8 bits




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 41

EN 61131-3:2002

Table 17 - Variable type assignment features

No. Feature/examples g k\
4 Array location assignment ' .‘%
VAR Declares an array of 10 integers to be % 0 contiguous
INARY AT %IW6 : input locations starting at $1w6 (
ARRAY [0..9] OF INT; a’
END_ VAR (\
5 Automatic memory alloi-\a\tl&x}f symbolic variables
VAR N\ Bcates a memory bit to the Boolean variable
CONDITION RED : BOOL; \\ CONDITION RED.
IBOUNCE : WORD ‘\’ Q Allocates a memory word to the 16-bit string variable
IBOUNCE.
MYDUB : DWORD ; Allocates a double memory word to the 32-bit-string
variable MYDUB.
AWORD, BWORD, CWORD : INT; Allocates 3 separate memory words for the integer
variables AWORD, BWORD, and CWORD.
MYSTR: STRING[10] ; Allocates memory to contain a string with a
END VAR maximum length of 10 characters. After initializa-
tion, the string has length 0 and contains the empty
string ' '.
6 Array declaration
VAR THREE : Allocates 400 memory words for a three-
ARRAY[1..5,1..10,1..8] OF INT; dimensional array of integers
END VAR
7 Retentive array declaration
VAR RETAIN RTBT: Declares retentive array RTBT with “cold
ARRAY[1..2,1..3] OF INT; restart” initial values of 0 for all elements
END_ VAR
8 Declaration of structured variables
VAR MODULE 8 CONFIG : Declaration of a variable of derived data
ANALOG 16 INPUT CONFIGURATION; type (see table 12)
END_ VAR
NOTE 1 Initialization of system inputs is implementation-dependent; see 2.4.2.
NOTE 2 The notes to table 16 a) also apply to this table.

2 |If directly represented variables are explicitly located, features 1 to 4 can only be used in
PROGRAM and VAR GLOBAL declarations, as defined in 2.5.3 and 2.7.1, respectively. If the
asterisk notation of feature 10 in table 15 is used to indicate instance specific location
assignment of a partly specified directly represented variable, features 1 and 2 can not be used,
and features 3 and 4 can only be used in declarations of internal variables of function blocks and
programs, as defined in 2.5.2 and 2.5.3, respectively.

2.4.3.2 Initial value assignment

The VAR..

.END_ VAR construction can be used as shown in table 18 to specify initial values of

directly represented variables or symbolically represented single- or multi-element variables.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 42

EN 61131-3:2002

Initial values can also be specified by using the instance-specific initialization feature provided by the
VAR _CONFIG. ..END VAR construct described in 2.7.1 (table 49, feature 11). Instance-specific initial
values always override type-specific initial values.

NOTE The usage of the VAR INPUT, VAR OUTPUT, and VAR IN OUT constructions C@@
in subclause 2.5.

Initial values cannot be given in VAR EXTERNAL declarations. ge

During initialization of arrays, the rightmost subscript of an arra hav‘agnost rapidly with respect to
filling the array from the list of initialization variables. (\

Parentheses can be used as a repetltlon factor, i q}mahzanon lists, for example, 2 (1,2, 3) is
equivalent to the initialization sequenc

If the number of initial val X&% he initialization list exceeds the number of array entries, the
excess (rightmost) initial v u Il be ignored. If the number of initial values is less than the
number of array entries, the remaining array entries shall be filled with the default initial values for the
corresponding data type. In either case, the user shall be warned of this condition during preparation
of the program for execution.

When a variable is declared to be of a derived, structured data type as defined in 2.3.3.1, initial values
for the elements of the variable can be declared in a parenthesized list following the data type
identifier, as shown in table 18. Elements for which initial values are not listed in the initial value list
shall have the default initial values declared for those elements in the data type declaration.

When a variable is declared to be a function block instance, as defined in 2.5.2.2, initial values for the
inputs and any accessible variables of the function block can be declared in a parenthesized list
following the assignment operator that follows the function block type identifier as shown in table 18.
Elements for which initial values are not listed shall have the default initial values declared for those
elements in the function block declaration.

Table 18 - Variable initial value assignment features

No. Feature/examples
1° Initialization of directly represented variables
VAR AT %0X5.1 : BOOL :=1; Boolean type, initial value = 1
AT %MW6 : INT := 8 ; Initializes a memory word to integer 8
END VAR
2° Initialization of directly represented retentive variables
VAR RETAIN At cold restart, the 8 most significant bits of
AT $QW5 : WORD := 16#FF00 ; the 16-bit string at output word 5 are to be
END VAR initialized to 1 and the 8 least significant bits
h to0
3@ Location and initial value assignment to symbolic variables
VAR Assigns output word 28 to the
VALVE POS AT $QW28 : INT := 100; integer variable VALVE POS, with
END VAR an initial value of 100
4° Array location assignment and initialization
VAR OUTARY AT %QW6 : Declares an array of 10 integers to be
ARRAY[0..9] OF INT := [10(1)];: allocated to contiguous output locations
END VAR starting at $Qwe6, each with an initial
value of 1




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 43

EN 61131-3:2002

Table 18 - Variable initial value assignment features

<

No. Feature/examples
5 Initialization of symbolic variables
VAR Allocates a memory bit to the Boolean GU
MYBIT : BOOL := 1 ; variable MYBIT with an initial v

OKAY : STRING[10]
END VAR

:= 'OK';

maximum len aracters. After

Allocates memory “gtrmg with a
initia za % has a length of 2 and
cotXA wo-byte sequence of characters
decimal 79 and 75 respectively), in an
rder appropriate for printing as a character
string

6 X0

A\
\\

. Array initialization

A\ W Q) . -
VAR Allocates 8 memory bits to contain initial
BITS : ARRAY[0..7] OF BOOL values
.= [1,1,0,0,0,1,0,0] ; BITS[O}I: 1, BITS[].] = 1,...,
BITS[6]:= 0, BITS[7] := O.
TBT : ARRAY [1..2,1..3] Alllcl)cates a 2-by-3 integer array TBT with
OF INT initial values
10 a6l TBT[1,1]:=1, TBT[1,2]:=2,
= [1,2,304),6] TBT[1,3]:=4, TBT[2,1]:=4,
END_VAR TBT[2,2]:=4, TBT[2,3]:=6.
7 Retentive array declaration and initialization
VAR RETAIN RTBT : Declares retentive array RTBT with “cold restart”
ARRAY (1..2,1..3) OF INT initial values of:
.= [1,2,3(4)]; RTBT[]_,]_J = l, RTBT[]_,Z] = 2,
END VAR RTBT[1,3] := 4, RTBT[2,1] := 4,
RTBT[2,2] := 4, RTBTI[2,3] := O.
8 Initialization of structured variables
VAR MODULE 8 CONFIG: Initialization of a variable of
ANALOG 16 INPUT CONFIGURATION := derived data type (see table 12)
(SIGNAL_TYPE := DIFFERENTIAL, This example illustrates the
CHANNEL declaration of a non-default initial
:= [4((RANGE := UNIPOLAR 1_5V)), value for the fifth element of the
(RANGE:= BIPOLAR 10 V, CHANNEL array of the variable
MIN SCALE := 0, MODULE 8 CONFIG.
MAX SCALE := 500)1]);
END VAR
9 Initialization of constants
VAR CONSTANT PI : REAL := 3.141592 ; END VAR
10 Initialization of function block instances

VAR TempLoop :

PID :=

(PropBand := 2.5,

Integral := T#5s);
END VAR

Allocates initial values to inputs and
outputs of a function block instance

2.5.3 and 2.7.1 respectively.

? Features 1 to 4 can only be used in PROGRAM and VAR _GLOBAL declarations, as defined in




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 44

EN 61131-3:2002

2.5 Program organization units

The program organization units defined in this part of IEC 61131 are the function, function block, \
program. These program organization units can be delivered by the manufacturer, or progr
the user by the means defined in this part of the standard.

Program organization units shall not be recursive; that is, the invocation of a pgo @agamzatlon unit
shall not cause the invocation of another program organization unit of thggi;é&p

The information necessary to determine execution times of pl;o
one or more implementation-dependent parameters.

ation units may consist of

2.5.1 Functions

For the purposes of program roIIer programming languages, a function is defined as a
program organization unit Wn executed, yields exactly one data element, which is considered
to be the function result, d arbitrarily many additional output elements (VAR OUTPUT and
VAR _IN OUT). As for any data element, the function result can be multi-valued, for example, an array

or structure. The invocation of a function can be used in textual languages as an operand in an
expression. For example, the SIN and cos functions could be used as shown in figure 4.

a) VAR X,Y,Z,RES1,RES2 : REAL; EN1,V : BOOL; END VAR
RES1 := DIV(INl := COS(X), IN2 := SIN(Y), ENO => EN1);
RES2 := MUL (SIN(X), COS(Y));

7: = ADD(EN := EN1, IN1 := RES1, IN2 := RES2, ENO => V);

b) R + e + e +
X --—+-|] COS |--+ ~-|EN ENO|----- |[EN ENO|--- V

[ (. | | \ |
| +-———- + +--—| DIV |-—-—- | ADD |--- Z
| | | \ |
| o | | |
Y —4--—| SIN |---——- | [ R S— +
1 | i +o
| ] e |
[ \
| | +===—- + R +
| +-| SIN |--+ -|EN ENO| |
| | [ | | \
I — + 4- -| MUL |-——+
| | |
| T + | |
+===] COS |--=--- | |
| | i +
R +

IEC 2474/02

a) Structured Text (ST) language - see subclause 3.3
b) Function Block Diagram (FBD) language - see subclause 4.3
NOTE This figure shows two different representations of the same functionality. It is not required
to support any automatic transformation between the two forms of representation.
Figure 4 - Examples of function usage



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 45
EN 61131-3:2002

Functions shall contain no internal state information, i.e., invocation of a function with the same
arguments (input variables VAR INPUT and in-out variables VAR IN OUT) shall always yield the
same values (output variables VAR OUTPUT, in-out variables VAR IN OUT and function result). It
shall be an error if external variables as defined in 2.4.3 cause the violation of this rule. ((\\

Any function type which has already been declared can be used in the declaration of g\grogram
organization unit, as shown in figure 3.

2.5.1.1 Representation

ecgm;hically or textually.

f this standard, the invocation of functions shall be

Functions and their invocation can be represented

In the textual languages defined in CI‘\

. . . .
according to the following rules; \? .
a

1) Input argument assignmant shall follow the rules given in table 19 a).
2) Assignments of output variables of the function shall be either empty or to variables.
3) Assignments to VAR_IN_OUT arguments shall be variables.

4) Assignments to VAR INPUT arguments may be empty (feature 1 of table 19 a)), constants,
variables or function calls. In the latter case, the function result is used as the actual argument.

In the graphic languages defined in clause 4 of this standard, functions shall be represented as
graphic blocks according to the following rules:

5) The form of the block shall be rectangular or square.

6) The size and proportions of the block may vary depending on the number of inputs and other
information to be displayed.

7) The direction of processing through the block shall be from left to right (input variables on the left
and output variables on the right).

8) The function name or symbol, as specified below, shall be located inside the block.

9) Provision shall be made for input and output variable names appearing at the inside left and right
sides of the block respectively when the block represents:

- one of the standard functions defined in 2.5.1.5, when the given graphical form includes the
variable names; or

- any additional function declared as specified in 2.5.1.3.
This usage is subject to the following provisions:

a) Where no names are given for input variables in standard functions, the default names
IN1, INZ2, ... shallapply intop-to-bottom order.

b) When a standard function has a single unnamed input, the default name 1N shall apply.

c) The default names described above may, but need not appear at the inside left-hand side
of the graphic representation.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 46

EN 61131-3:2002

10) An additional input EN and/or output ENO as specified in 2.5.1.2 may be used. If present, they shall
be shown at the uppermost positions at the left and right side of the block, respectively.

11) The function result shall be shown at the uppermost position at the right side of the block, excﬂ\\
there is an ENO output, in which case the function result shall be shown at the next p03| 8 15

the ENO output. Since the name of the function is used for the aSS|gnment of it Iue as
specified in 2.5.1.3, no output variable name shall be shown at the right SI ck
12) Argument connections (including function result) shall be showé@%ow lines.

13) Negation of Boolean signals shall be shown by pla n circle just outside of the input or
output line intersection with the block. In t gl cter set defined in 2.1.1, this shall be
represented by the upper case alphabetl L\ own in table 19.

14) All inputs and outputs (in I t|on result) of a graphically represented function shall be
represented by a singlﬁ |de the corresponding side of the block, even though the data
element may be a multi-dlement variable.

15) Function results and function outputs (VAR OUTPUT) can be connected to a variable, used as
input to other function blocks or functions, or can be left unconnected.

16) It shall be an error if any VAR IN OUT variable of any function block invocation or function
invocation within a POU is not “properly mapped”. A VAR IN OUT variable is “properly mapped” if
it is connected graphically at the left, or assigned using the “:=" operator in a textual invocation, to
a variable declared (without the CONSTANT qualifier) in a VAR IN OUT, VAR, VAR OUT, or
VAR EXTERNAL block of the containing program organization unit, or to a “properly mapped”
VAR_IN OUT of another contained function block instance or function invocation.

17) A “properly mapped” (see rule 12 above) VAR IN OUT variable of a function block instance or a
function invocation can be connected graphically at the right, or assigned using the “:=” operator in
a textual assignment statement, to a variable declared in a VAR, VAR OUT or VAR EXTERNAL
block of the containing program organization unit. It shall be an error if such a connection would
lead to an ambiguous value of the variable so connected.

Table 19 - Graphical negation of Boolean signals

No. Feature®® Representation
ot
1 Negated input ---Q | ---
ot
ot
2 Negated output —_— | O --
ot

2 If either of these features is supported for functions, it shall also
be supported for function blocks as defined in 2.5.2, and vice
versa.

® The use of these constructs is forbidden for in-out variables.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 47
EN 61131-3:2002

Figure 5 illustrates both the graphical and equivalent textual use of functions, including the use of a
standard function (2DD) with no defined formal argument names; a standard function (SHL) with

defined formal argument names; the same function with additional use of EN input and negated ENW\
output; and a user-defined function (INC) with defined formal argument names.

e, O

Example

-
Explanatjoy( ) <

B---| |---A

Graphi @- XDD function

‘Q 75.1.5.2)
language; see 4.3)

N G (No formal variable names)

Textual use of ADD function
(ST language; see 3.3)

o +
| SHL |
B---|IN  |---A
C---|IN |
o +

Graphical use of sHL function
(See 2.5.1.5.3)
(FBD language; see 4.3)
(Formal argument names)

Textual use of SHL function
(ST language; see 3.3)

| SHL |

ENABLE---|EN ENO|O--NO_ERR

B---|IN |---A
C---|N |

Graphical use of SHL function
(See 2.5.1.5.3)
(FBD language; see 4.3)
(Formal argument names; use of EN input
and negated ENO output)

A := SHL(EN =ENABLE, IN:=B, N:=C,
NOT ENO => NO_ERR);

Textual use of SHL function
(ST language; see 3.3)

o +
| INC |

! |---2
X===|V-==V|---X
o +

Graphical use of user-defined
INC function
(FBD language, see 4.3)

(Formal argument names for VAR IN OUT)

Textual use of INC function

(ST language, see 3.3)

. IEC 2475/02
Figure 5 - Use of formal argument names

Features for the textual invocation of functions are defined in table 19 a). The textual invocation of a
function shall consist of the function name followed by a list of arguments. In the ST language defined
in subclause 3.3, the arguments shall be separated by commas and this list shall be delimited on the
left and right by parentheses.

In feature 1 of table 19 a) (formal invocation), the argument list has the form of a set of assignments of
actual values to the formal argument names (formal argument list), that is:

1) assignments of values to input and in-out variables using the " : =" operator, and
2) assignments of the values of output variables to variables using the "=>" operator.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 48

EN 61131-3:2002

The ordering of arguments in the list shall be insignificant. In feature 1 of table 19 a), any variable not
assigned a value in the list shall have the default value, if any, assigned in the function specification,
or the default value for the associated data type.

In feature 2 of table 19 a) (non-formal invocation), the argument list shall contain exactlyﬁg\
nction

number of arguments, in exactly the same order and of the same data types as giveq @.ih
definition, except the execution control arguments EN and ENO. \)gé

Table 19 a) - Textual invocation of functions for f({rm\a(‘@o’ogormal argument list
\

Feature al G\ A Example
No. Invocation | Variable | Varia &'\:)f In Structured Text (ST) language
type assignme or;l \ ariables -see 3.3
kO
1 formal yes‘\\ any any A := LIMIT(EN:=COND, IN:=B,
MX:=5, ENO=>TEMPL) ;
2? | non-formal no fixed fixed A := LIMIT(1, B, 5);

® Feature #2 is required for invocation of any of the standard functions defined in subclause
2.5.1.5 without formal names for one or more input variables, but feature #1 shall be used if
EN/ENO is necessary in function invocations.

NOTE 1 In the example given in feature #1, the MN variable will have the default value 0
(zero).

NOTE 2 The example given in feature #2 is semantically equivalent to the following
invocation with formal variable assignments (feature #1):

A := LIMIT(EN := TRUE,MN := 1, IN := B, MX := 5);

2.5.1.2 Execution control

As shown in table 20, an additional Boolean EN (Enable) input or ENO (Enable Out) output, or both,
can be provided by the manufacturer or user according to the declarations

VAR INPUT EN: BOOL := 1; END VAR
VAR OUTPUT ENO: BOOL; END VAR

When these variables are used, the execution of the operations defined by the function shall be
controlled according to the following rules:

1) If the value of EN is FALSE (0) when the function is invoked, the operations defined by the
function body shall not be executed and the value of ENO shall be reset to FALSE (0) by the
programmable controller system.

2) Otherwise, the value of ENO shall be set to TRUE (1) by the programmable controller system,
and the operations defined by the function body shall be executed. These operations can
include the assignment of a Boolean value to ENO.

3) If any of the errors defined in table E.1 for subclauses of 2.5.1.5 occurs during the execution of
one of the standard functions defined in 2.5.1.5, the ENO output of that function shall be reset to
FALSE (0) by the programmable controller system, or the manufacturer shall specify other
disposition of such an error according to the provisions of 1.5.1.

4) If the ENO output is evaluated to FALSE (0), the values of all function outputs (VAR OUTPUT,
VAR _IN OUT and function result) shall be considered to be implementation-dependent.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 49
EN 61131-3:2002

NOTE It is a consequence of these rules that the ENO output of a function must be explicitly
examined by the invoking entity if necessary to account for possible error conditions.
Table 20 - Use of EN input and ENO output ((\\
cQ
S
No. Feature Example e *
‘a{ g |
Use of EN and ENO | % ADD_OK |
1 Shown in LD (Ladder Diagram) === ' EN  ENO ' o)
language; see 4.2 N ' |
\\ A———| |---C \
B-——| | \
\fd€‘§:> M - |
\\f
- +
2 Usage without EN and ENO A-——| + |-—=C
Shown in FBD (Function Block B-=-1 !
Diagram) language; see 4.3 oo *
- +
3 Usage with EN and without ENO ADD_EN---|EN |
Shown in FBD (Function Block A-==l 4+ [===C
Diagram) language; see 4.3 B-—-1 '
- +
- +
4 Usage without EN and with ENO | ENO|---ADD_OK
Shown in FBD (Function Block A-==l 4+ [===C
Diagram) language; see 4.3 B-—-1 '
- +
® The graphical languages chosen for demonstrating the features above are given only as
exemples. Features, if chosen by a vendor, shall be in effect for all languages supported
by the vendor (IL, ST, LD, FBD).

2.5.1.3 Declaration

Features for the textual and graphical declaration of functions are listed in table 20 a).

As illustrated in figure 6, the textual declaration of a function shall consist of the following elements:

1) The keyword FUNCTION, followed by an identifier specifying the name of the function being
declared, a colon (:), and the data type of the value to be returned by the function;

2) AVAR_INPUT..

.END_ VAR construct as defined in 2.4.3, specifying the names and types of the

function's input variables;

3) VAR IN OUT...

END VAR and VAR _OUTPUT. . .END VAR constructs (see F.11 for an example

of the use of the latter construct) as defined in 2.4.3, if required, specifying the names and types
of the function's in-out and output variables;

4) A VER..

.END VAR construct, if required, specifying the names and types of the function's

internal variables;



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 50

EN 61131-3:2002

5) A function body, written in one of the languages defined in this standard, or another
programming language as defined in 1.4.3, which specifies the operations to be performed upon
the variable(s) in order to assign values dependent on the function's semantics to a variable
with the same name as the function, which represents the function result to be returned b

function (function result), as well as to in-out or output variables; CJ
6) The terminating keyword END FUNCTION. 66
If the generic data types given in table 11 are used in the declaratlon unctlon variables,
then the rules for inferring the actual types of the arguments ctions shall be part of the
function definition.
The variable initialization constructs defined in gﬁe used for the declaration of default values
of function inputs and initial values of Sd anhd output variables.
to the function via a VAR IN OUT construct can be modified

The values of variables whi @
from within the function. {(\8‘\
As illustrated in figure 6, the graphic declaration of a function shall consist of the following elements:

1) The bracketing keywords FUNCTION. . .END FUNCTION or a graphical equivalent.

2) A graphic specification of the function name and the names, types and possibly initial values of
the function's result and variables (input, output and in-out).

3) A specification of the names, types and possibly initial values of the internal variables used in
the function, for example, using the VAR. . . END_VAR construct.

4) A function body as defined above.

The maximum number of function specifications allowed in a particular resource is an
implementation-dependent parameter.

Table 20 a) - Function features

No. Description Example
1 In-out variable declaration (textual) VAR IN OUT A: INT; END VAR
2 In-out variable declaration (graphical) See figure 6 b)
3 Graphical connection of in-out variable to different See figure 6 d)
variables(graphical)




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 51

EN 61131-3:2002

a) FUNCTION SIMPLEiFUN : REAL
VAR INPUT
A,B : REAL ; (* External interface specification *)

C : REAL := 1.0; <:S<F:\x

END VAR (:

VAR IN OUT COUNT : INT ; END VAR 66‘
VAR COUNTP1 : INT ; END VAR

COUNTP1 := ADD(COUNT, 1) ; (*Function body specific@ *)
COUNT := COUNTPI ; . a’
SIMPLE FUN := A*B/C; &\\‘\

END FUNCTION

le is given a default value of 1.0, as
division by zero” error if the input is not specified
ked, for example, if a graphical input to the function is

NOTE In the above example, the i
specified in 2.4.3.2, t

when the functigRy’n
left unconnc\ﬁ&,@

b) FUNCTION

o + (* External interface specification *)
| SIMPLE FUN |

REAL--—-|A | -————REAL

REAL----|B |

REAL----|C [

INT----- | COUNT---COUNT | ———-INT
fom e +

(* Function body specification *)

+===+
|ADD|-—- to———t
COUNT-~- | | --=-COUNTP1--| := |---COUNT
1--| | +o———+
+=—=+ +=—=+
A-——| * | 4+-——+
B-—-| |---1 / |---SIMPLE_FUN
t=——t \ |
Commmmmmm - \ |
+-——t
END FUNCTION
c) e
VAR X,Y,Z,RESULT : REAL:
VAR COUNT1,COUNT2 : INT;
RESULT := SIMPLE FUN (A:=X,B:=Y,C:=%,COUNT:=COUNT1) ;
COUNT2 := COUNT1;
d) fomm e +
| SIMPLE FUN |
X--—-|A | -—=-RESULT
Y----|B [
z----|C [
COUNT1--~|COUNT--~COUNT | -==-COUNT2
Fmm +

NOTE The effect of this invocation of this function is identical to that
in figure 6 c)

a) Textual declaration in ST language (subclause 3.3)

b) Graphical declaration in FBD language (subclause 4.3)
c) Usage of a function in ST language

d) Usage of a function in FBD language (subclause 4.3)

Figure 6 - Examples of function declarations and usage

IEC 2476/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 52

EN 61131-3:2002

2.5.1.4 Typing, overloading, and type conversion

A standard function, function block type, operator, or instruction is said to be overloaded when it can
operate on input data elements of various types within a generic type designator as defined in 2{{\\
For instance, an overloaded addition function on generic type ANY NUM can operate on dat

LREAL, REAL, DINT, INT, and SINT.

When a programmable controller system supports an overloaded stan \l)%n function block

type, operator, or instruction, this standard function, function block ator, or instruction shall
apply to all data types of the given generic type which are su system. For example, if a
programmable controller system supports the overloade DD and the data types SINT, INT,

and REATL, then the system shall support the ADD fu 'o‘ mputs of type SINT, INT, and REAL.

verloaded operator is to be typed, i.e., the types of its
r elementary or derived data type as defined in 2.3, this shall

When a function which normally represxg
inputs and outputs restricted to
be done by appending an % haracter followed by the required type, as shown in table 21.

Table 21 - Typed and overloaded functions

No. Feature Example
+-———- +
| ADD |
ANY NUM----- | | --—-ANY NUM
1 Overloaded functions ANY NUM----- | |
————— | |
. — | |
ANY NUM----- | |
+-———- +
Fom————— +
| ADD INT |
INT----- | | -———INT
2° Typed functions TNT————— | ,
. —m——= | |
. —m——= | |
INT----- | |
Fom +
NOTE The overloading of non-standard functions or function block types is beyond the scope of
this standard.
% If feature 2 is supported, the manufacturer shall provide a table of which functions are
overloaded and which are typed in the implementation.

When the type of the result of a standard function defined in 2.5.1.5 is generic, then the actual types of
all input variables of the same generic type shall be of the same type as the actual type of the function
value in a given invocation of the function. If necessary, the type conversion functions defined in
2.5.1.5.1 can be used to meet this requirement. Examples of the application of this rule are given in
figures 7 and 8.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 53
EN 61131-3:2002

Type declaration
(ST language - see 3.3)

Usage
(FBD language - see 4.3)
(ST language - see 3.3)

al

VAR +-——t 0\
A : INT ; A--—| + |---C G
o S eo:
C : INT ; TR— a'\)g
END VAR ¢ s nem; ’Q

NOTE Type conversion is not required in the exampheryf ove.

VAR

+o——t

A : INT ; 7T‘07REAL|———I + |---C
B : REAL ; ‘\\ | |
C : REAL; . l |
END VAR \\\\Q -t
C := INT TO REAL(A)+B;
VAR e S +
A : INT ; A----| + |---|INT TO REAL|---C
B : INT ; B----| | to—mm +
C : REAL; PR
END VAR
- C := INT TO REAL (A+B);

IEC 2477/02

Figure 7 - Examples of explicit type conversion with overloaded functions

Type declaration
(ST language - see 3.3)

Usage
(FBD language - see 4.3)
(ST language - see 3.3)

VAR
A : INT ;
B : INT ;
C : INT ;
END VAR

C

B-—-| !

ADD INT (A,B);

NOTE Type conversion is not required in the example shown above.

VAR fom e + fomm - +
A : INT ; A--—-|INT TO REAL|---| ADD REAL |---C
B : REAL ; t-——— + | |
C : REAL; B-————m | |
END VAR Fo— +
C := ADD REAL(INT TO REAL(A),B);
VAR fom e + fomm e +
A : INT ; A---| ADD INT |--—-|INT TO REAL|---C
B : INT ; | | fo———————— +
C : REAL; B-—-| |
END VAR Fe——————— +
C := INT TO REAL(ADD INT(A,B)):;

IEC 2478/02

Figure 8 - Examples of explicit type conversion with typed functions



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 54

EN 61131-3:2002

2.5.1.5 Standard functions

Definitions of functions common to all programmable controller programming languages are giv \
this subclause. Where graphical representations of standard functions are shown in this s@

equivalent textual declarations may be written as specified in 2.5.1.3. 6 .
A standard function specified in this subclause to be extensible is allowed je 0 or more inputs
to which the indicated operation is to be applied, for example, exte ddition shall give as its

output the sum of all its inputs. The maximum number of'xixs@of arl extensible function is an
implementation-dependent parameter. The actual nu inputs effective in a formal call of an
extensible function is determined by the formal inpu ith the highest position in the sequence of
parameter names. *

EXAMPLE 1 The sta t\\
X i= ADD(YI% )*
is equivalent to
X := ADD(IN1 := Y1, IN2 := Y2, IN3 := Y3);
EXAMPLE The following statements are equivalent:
I := MUX INT(K:=3,INO := 1, IN2 := 2, IN4 := 3);
I :=0;

2.5.1.5.1 Type conversion functions

As shown in table 22, type conversion functions shall have the form * TO **, where “*” is the type of
the input variable IN, and “**” the type of the output variable OUT, for example, INT TO REAL. The
effects of type conversions on accuracy, and the types of errors that may arise during execution of
type conversion operations, are implementation-dependent parameters.

Table 22 - Type conversion function features

No. Graphical form Usage example
Fo———— +
1ab£
* ___| * TO * % ’___ * %
fommm - + A := INT TO REAL(B) ;

(*) - Input data type, e.g., INT
(**) - Output data type, e.g., REAL
(* _TO_**) -Function name, e.g., INT TO REAL

fo——— +

Cc

2 ANY REAL---| TRUNC |---ANY INT A := TRUNC(B) ;

fo——— +

g Fom +

3 ¥——| * BCD TO ** [-——%* A := WORD BCD TO INT(B);
Fom +
Fmm +

d

4 **——| %% TO BCD * |---* A := INT TO BCD WORD(B);
Fmm +

NOTE Usage examples are given in the ST language defined in 3.3.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 55
EN 61131-3:2002

Table 22 - Type conversion function features

@ A statement of conformance to feature 1 of this table shall include a list of the specific type \
conversions supported, and a statement of the effects of performing each conversion.

® Conversion from type REAL or LREAL to SINT, INT, DINT or LINT shall round
the convention of IEC 60559, according to which, if the two nearest integer Iy
near, the result shall be the nearest even integer, e.g.:

REAL TO INT(1.6) isequivalentto 2 a"g
REAL TO INT(-1.6) isequivalentto -2 (3‘\\‘\

REAL TO INT(1.5) isequivalentto 2
REAL TO INT(-1.5) is equivalentto —\

REAL TO INT(1.4) is equnva

REAL TO INT(-1.4) isw
REAL TO INT(2.5) isequivalentto 2
REAL TO INT(-2.5) isequivalentto -2

° The function TRUNC shall be used for truncation toward zero of a REAL or LREAL, yielding
one of the integer types, for instance,

TRUNC(1.6) is equivalent to 1
TRUNC (-1.6) is equivalent to -1

TRUNC (1.4) is equivalent to 1
TRUNC (-1.4) is equivalent to -1

¢ The conversion functions * BCD TO ** and ** TO BCD_* shall perform conversions
between variables of type BYTE, WORD, DWORD, and LWORD and variables of type
USINT, UINT, UDINT and ULINT (represented by "*" and "**" respectively), when the
corresponding bit-string variables contain data encoded in BCD format. For example, the
value of USINT TO BCD BYTE (25) would be 240010 0101, and the value of
WORD BCD TO UINT (2#0011 0110 1001) would be 369.

© When an input or output of a type conversion function is of type STRING or

WSTRING, the character string data shall conform to the external representation
of the corresponding data, as specified in 2.2, in the character set defined in
2.1.1.

2.5.1.5.2 Numerical functions

The standard graphical representation, function names, input and output variable types, and function
descriptions of functions of a single numeric variable shall be as defined in table 23. These functions
shall be overloaded on the defined generic types, and can be typed as defined in 2.5.1.4. For these
functions, the types of the input and output shall be the same.

The standard graphical representation, function names and symbols, and descriptions of arithmetic
functions of two or more variables shall be as shown in table 24. These functions shall be overloaded
on all numeric types, and can be typed as defined in 2.5.1.4.

The accuracy of numerical functions shall be expressed in terms of one or more implementation-
dependent parameters.

It is an error if the result of evaluation of one of these functions exceeds the range of values specified
for the data type of the function output, or if division by zero is attempted.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 56

EN 61131-3:2002

Table 23 - Standard functions of one numeric variable

Graphical form

Usage example

(*) - Input/Output (I/O) type
(**) - Function name

A := SIN(B) ;

(ST language - see 3.3)

oV

N

cO

.

\

No. | Function name 1/0 type N ‘\(\a;c\r'i?tion
GeneAraI (m@\?ﬁg ¥
1 ABS ANY NUM 4 o \Y\‘ ) Absolute value
2 SQORT ANY_ E@a\“ \\l Square root
\\ Y Logarithmic functions
LN AI\‘IY_REAL Natural logarithm
4 | LoG ANY REAL Logarithm base 10
5 | Exp ANY REAL Natural exponential
Trigonometric functions
6 SIN ANY REAL Sine of input in radians
7 | cos ANY REAL Cosine in radians
8 | Tan ANY REAL Tangent in radians
9 | asin ANY REAL Principal arc sine
10 | acos ANY REAL Principal arc cosine
11 | aran ANY REAL Principal arc tangent




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 57

EN 61131-3:2002

Table 24 - Standard arithmetic functions

Graphical form Usage example /é‘\
o\

ANY NUM -—-| | or
-—= | A := B+C+D ; a'\)
= S

ANY NUM ---| | . ‘\a‘

. G\(\\

.

o G
ANY NUM --=| *** |-—— ANY NUM A := ADD(B,C,D) ; 66‘

(***) - Name or Symbol ‘Q&N
No.*®|Name| Symbol \ \\N Description

’(0 E‘({ensible arithmetic functions

_X
129 ADD + \\‘O‘t’ﬁ := IN1 + IN2 + ... + INn

13 MUL * OUT := IN1 * IN2 * ... * INn

Non-extensible arithmetic functions

149 | sup - OUT := IN1 - IN2

15° | pv | / OUT := IN1 / IN2

16 | mop OUT := IN1 modulo IN2

17° | Bxpr | *» Exponentiation: OUT := IN1™

18" | move | :-= OUT := IN

NOTE 1 Non-blank entries in the Symbol column are suitable for use as operators in textual
languages, as shown in tables 52 and 55.

NOTE 2 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; oUT

refers to the output.
NOTE 3 Usage examples and descriptions are given in the ST language defined in 3.3.

a

IN1 and IN2 shall be of generic type ANY_INT for this function. The result of evaluating this
function shall be the equivalent of executing the following statements in the ST language as
defined in 3.3:

IF (IN2 = 0) THEN OUT:=0 ; ELSE OUT:=IN1 - (IN1/IN2)*IN2 ; END IF

® 1N1 shall be of type ANY REAL, and TN2 of type ANY NUM for this function. The output shall be
of the same type as IN1.

° The result of division of integers shall be an integer of the same type with truncation toward zero,
forinstance, 7/3 = 2and (-7)/3 = -2.

¢ When the named representation of a function is supported, this shall be indicated by the suffix “n”
in the compliance statement. For example, “12n” represents the notation “ADD”.

® When the symbolic representation of a function is supported, this shall be indicated by the suffix
“s” in the compliance statement. For example, “12s” represents the notation “+”.

" The MOVE function has exactly one input (IN) of type ANY and one output (OUT) of type ANY.
9 The generic type of the inputs and outputs of these functions is ANY MAGNITUDE.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 58

EN 61131-3:2002

2.5.1.5.3 Bit string functions

The standard graphical representation, function names and descriptions of shift functions for a si@\
bit-string variable shall be as defined in table 25. These functions shall be overloaded on al @
types, and can be typed as defined in 2.5.1.4. .
The standard graphical representation, function names and symbols, aae ptions of bitwise
Boolean functions shall be as defined in table 26. These functions shall nsible, except for NOT,
and overloaded on all bit-string types, and can be typed as def'{“@.& <3

Table 25 - sw Shift functions

Graphical for (\‘\\\‘ Usage example?
N\ ¢
| xxx | A := SHL(IN:=B, N:=5) ;
ANY_BIT ===[IN |=== ANY _BIT (ST language - see 3.3)
ANY INT -—-|N |
tm———= +

(***) - Function Name

No. Name Description
1 SHL OUT := IN left-shifted by N bits, zero-filled on right
2 SHR OUT := IN right-shifted by N bits, zero-filled on left
3 ROR OUT := IN right-rotated by N bits, circular
4 ROL OUT := IN left-rotated by N bits, circular

NOTE The notation oUT refers to the function output.

2 It shall be an error if the value of the N input is less than zero.

2.5.1.5.4 Selection and comparison functions

Selection and comparison functions shall be overloaded on all data types. The standard graphical
representations, function names and descriptions of selection functions shall be as shown in table 27.

The standard graphical representation, function names and symbols, and descriptions of comparison
functions shall be as defined in table 28. All comparison functions (except NE) shall be extensible.

Comparisons of bit string data shall be made bitwise from the most significant to the least significant
bit, and shorter bit strings shall be considered to be filled on the left with zeros when compared to
longer bit strings; that is, comparison of bit string variables shall have the same result as comparison
of unsigned integer variables.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 59

EN 61131-3:2002

Table 26 - Standard bitwise Boolean functions

Graphical form Usage examples

ANY BIT ---| *** |-—— ANY BIT

+
|
i
|

+

g
I

AND(B,C,D) ; GO“

ANY BIT ---| | 66‘
. — | A:=B&C&D; g

S “\a»()a

. )
(***) - Name or symbol G

No a,b

Name Symbol \ ‘\W Description

™
AND & (NOTE AU‘P := IN1 & IN2 & ... & INn
B

>=1 (Nxt\?‘)" ouT :

IN1 OR IN2 OR ... OR INn

5
6 OR
7

XOR =2k+1 (NOTE 2) | oUT := IN1 XOR IN2 XOR ... XOR INn

8 NOT ouT :

NOT IN1 (NOTE 4)

NOTE 1

NOTE 2
NOTE 3

NOTE 4

NOTE 5

This symbol is suitable for use as an operator in textual languages, as shown in tables
52 and 55.

This symbol is not suitable for use as an operator in textual languages.

The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to
the output.

Graphic negation of signals of type BOOL can also be accomplished as shown in table
19.

Usage examples and descriptions are given in the ST language defined in 3.3.

@ When the named representation of a function is supported, this shall be indicated by the suffix
“n” in the compliance statement. For example, “5n” represents the notation “AND”.

® When the symbolic representation of a function is supported, this shall be indicated by the suffix

1P

s” in the compliance statement. For example, “5s” represents the notation “s&”.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 60

EN 61131-3:2002

Table 27 - Standard selection functions®

No. Graphical form Explanation/example
o + Binary selection®:
| SEL | OUT := INO if G = O GO
1 BOOL-- |G | --ANY OUT := IN1 if G = 66
ANY--—|INO |

EXAMPLE: X)Q
ANY [IN1 | A := SEL a« X,IN1:=5) ;

- @\\s\)le maximum function:
| MAX | = MAX (IN1,IN2, ...,INn)

2a ANY ELEMENTARY-- | I——ANY ELENME]
- EXAMPLE:

A := MAX(B,C,D) ;

ANY ELEMENTARY——| \
ﬁ*@ 3

+ ————— Extensible minimum function:
| MIN | OUT := MIN (IN1,IN2, ...,INn)
2b | any ELEMENTARY-- | | -—ANY ELEMENTARY
- - EXAMPLE:

A := MIN(B,C,D) ;
ANY ELEMENTARY--| |

- +
tmmmm e + Limiter:
| LIMIT | OUT := MIN (MAX (IN,MN) , MX)
3 ANY ELEMENTARY--|MN | --ANY ELEMENTARY
- - EXAMPLE:
ANY ELEMENTARY--|IN [
- A := LIMIT(IN:=B,MN:=0,MX:=5);
ANY ELEMENTARY-- |MX [
fo—— +
PR + Extensible multiplexer ¢
| MUX | Select one of N inputs
e . .
4" | ANy INT--|K | -——-ANY depending on input K
ANY=====- | ! EXAMPLE :
PTTTTTT | ! A := MUX(0, B, C, D);
ANY--—-—- | [
would have the same effect as
+-—— +
A :=B ;
NOTE 1 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers
to the output.
NOTE 2 Usage examples and descriptions are given in the ST language defined in 3.3.

#The unnamed inputs in the MUX function shall have the default names INO, IN1,...,INn-1in
top-to-bottom order, where n is the total number of these inputs. These names may, but need not,
be shown in the graphical representation.

® The MUX function can be typed as defined in 2.5.1.4 in the form MUX * **, where * isthe type
of the K input and ** is the type of the other inputs and the output.

°lt is allowed, but not required, that the manufacturer support selection among variables of derived
data types, as defined in 2.3.3, in order to claim compliance with this feature.

¢ Itis an error if the inputs and the outputs to one of these functions are not all of the same actual
data type, with the exception of the G input of the SEL function and the K input of the MUX function.

® It is an error if the actual value of the K input of the MUX function is not within the range {0..n-1}.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 61

EN 61131-3:2002

Table 28 - Standard comparison functions

Graphical form

to—m—— +
ANY ELEMENTARY --| *** |--— BOOL A := GT(B,C,D) ; GO
-— |
ANY ELEMENTARY --| |

R + A := (B>C) & (C> ag
RXaved

(***) - Name or Symbol

Usage examples
\

No. | Name?® | Symbol® ‘ Bescrlptlon
5 GT > Decreaging,s

ouT, ‘ 1>IN2 & (IN2>IN3) & ... & (INn-1 > INn)
6 GE >= ‘V ofonlc sequence:

\\ o) := (IN1>=IN2) & (IN2>=IN3)& ... & (INn-1 >= INn)

7 | EO = Equality:

OUT := (IN1=IN2) & (IN2=IN3) & ... & (INn-1 = INn)
8 LE <= Monotonic sequence:

OUT := (IN1<=IN2)& (IN2<=IN3)& ... & (INn-1 <= INn)
9 LT < Increasing sequence:

OUT := (IN1<IN2) & (IN2<IN3) & ... & (INn-1 < INn)
10 NE <> Inequality (non-extensible)

OUT := (IN1 <> IN2)
NOTE 1 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT

refers to the output.

NOTE 2 All the symbols shown in this table are suitable for use as operators in textual

languages, as shown in tables 52 and 55.

NOTE 3 Usage examples and descriptions are given in the ST language defined in 3.3.

o

@ When the named representation of a function is supported, this shall be indicated by the suffix “n
in the compliance statement. For example, “5n” represents the notation “GT”.

® When the symbolic representation of a function is supported, this shall be indicated by the suffix
“s” in the compliance statement. For example, “5s” represents the notation

2.5.1.5.5 Character string functions

All the functions defined in 2.5.1.5.4 shall be applicable to character strings. For the purposes of
comparison of two strings of unequal length, the shorter string shall be considered to be extended on
the right to the length of the longer string by characters with the value zero. Comparison shall proceed
from left to right, based on the numeric value of the character codes in the character set defined in
2.1.1. For example, the character string ' z' shall be greater than the character string 'AZ', and 'Az"
shall be greater than 'ABC"'.

The standard graphical representations, function names and descriptions of additional functions of
character strings shall be as shown in table 29. For the purpose of these operations, character
positions within the string shall be considered to be numbered 1,2, , L, beginning with the
leftmost character position, where 1 is the length of the string.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 62
EN 61131-3:2002

It shall be an error if:

the actual value of any input designated as ANY INT in table 29 is less than zero;

evaluation of the function results in an attempt to (1) access a non-existent character positiom\
a string, or (2) produce a string longer than the implementation-dependent maximum sjx

length. ges R
Table 29 - Standard character string furn)cgﬁa'\)
No. Graphical form?® \‘\%Ianation/example
Ch _ _
1 o + . String length function
ANY STRING--| LEN |--ANY N Example:
e + “\ A := LEN('ASTRING');
. *‘0 . is equivalenttor := 7;
>\
2 +——XX\‘ Leftmost L characters of IN
| LEFT |
ANY STRING--|IN | ==ANY STRING Example:
— - A := LEFT(IN:='ASTR',L:=3);
ANY INT===-= 'L | is equivalent to
tommeo t A := 'AST' ;
3 Fmmm + Rightmost L. characters of IN
| RIGHT |
ANY STRING--|IN | -=ANY STRING Example:
— - A := RIGHT (IN:='ASTR',L:=3);
ANY INT===-= 'L | is equivalent to
oo + A := 'STR' ;
4 e + L characters of IN,
| MID | beginning at the p-th
ANY STRING--|IN | -=ANY STRING
ANY INT—emmm L | - Example:
— A := MID(IN:="'ASTR',L:=2,P:=2);
ANY_INT===-= '® | is equivalent to
A * A := 'ST' ;
5 fomm + Extensible concatenation
| CONCAT | Example:
ANY STRING---| | --ANY STRING A := CONCAT ('AB','CD','E') ;
-l ' is equivalent to
ANY STRING---| | A := 'ABCDE' ;
fom— +
6 Fmmm + Insert IN2 into IN1 after the
| INSERT | P-th character position
ANY STRING--|IN1 | -—ANY STRING
ANY STRING--|IN2 | - Example:
— A:=INSERT (IN1:="ABC',IN2:="XY', P=2
ANY INT----- | P | )
Fommmm * is equivalent to
A := 'ABXYC' ;
7 e + Delete 1. characters of IN, beginning
| DELETE | at the p-th character position
ANY STRING--|IN | -=ANY STRING
ANY INT—mm—e L | - Example:
— A := DELETE (IN:='ABXYC',L:=2,
ANY INT----—- | P | B
_ P:=3) ;
A * is equivalent to
A := 'ABC' ;




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 63

EN 61131-3:2002

Table 29 - Standard character string functions

\ “‘
FIND \
ANY STRING——IINl ANY INT

ANY STRING——IINZ

No. Graphical form?® Explanation/example
8 fommm + Replace L characters of IN1 by @f&)‘
| REPLACE | starting at the p-th char, sition
ANY STRING--|IN1 | -—ANY STRING
ANY STRING--|IN2 | i 4l
ANY_INT=---- L : REBL '"ABCDE', IN2:="X",
ANY INT----- | P | L =2, P:=3) ;
tommmm s + G is equivalent to
. A := 'ABXE' ;
9 | 4 Find the character position of the beginning of

the first occurrence of IN2 in IN1. If no
occurrence of IN2 is found, then oUT :=0.

Example:
A := FIND(IN1:='ABCBC',IN2:='BC"')
is equivalenttoa := 2 ;

NOTE The examples in this table are given in the Structured Text (ST) language defined in 3.3.

2.5.1.5.6 Functions of time data types

In addition to the comparison and selection functions defined in 2.5.1.5.4, the combinations of input

and output time data types shown in table 30 shall be allowed with the associated functions.

It shall be an error if the result of evaluating one of these functions exceeds the implementation-

dependent range of values for the output data type.

Table 30 - Functions of time data types

Numeric and concatenation functions

No. Name Symbol IN1 IN2 ouT
c,d
1a ADD + TIME TIME TIME
c,d
1b ADD_TIME + TIME TIME TIME
b
2a | app® + TIME OF DAY TIME TIME OF DAY
b
2b | ADD TOD TIME + TIME OF DAY TIME TIME OF DAY
3 b b
a | app + DATE_AND TIME TIME DATE_AND TIME
b
3b | app DT TIME + DATE_AND TIME TIME DATE_AND TIME
c,d
4a SUB - TIME TIME TIME
c,d
4b SUB_TIME - TIME TIME TIME
b
5a | sy’ - DATE DATE TIME
b
Sb | suB DATE DATE - DATE DATE TIME
b b
6a | sus - TIME OF DAY TIME TIME OF DAY
b
6b | sus TOD TIME - TIME OF DAY TIME TIME OF DAY
b b
7a | sus - TIME OF DAY TIME OF DAY TIME




Page 64
EN 61131-3:2002

Table 30 - Functions of time data types

Numeric and concatenation functions

No. Name Symbol IN1 IN2 ouT (fn\\
b \°
7b | suB TOD TOD - TIME OF DAY TIME OF DAY TIME GU
b L3
8a | sus® - DATE_AND TIME TIME ) QQEDT TME
: )
8b | sus pT TIME - DATE_AND TIME TIME ga,\- TE_AND TIME
b -
9a | sus® - DATE_AND TIME D \ TT TIME
b
9b | suB pT DT - DATE_AND_TIM ¥7AND7T TME TIME
I N
b .
10a | muL® * TIME “m“ ANY NUM TIME
1 K“ \ -
b
10b | vunTIME * ‘I\LNN ANY NUM TIME
w .|
11a | prv® m TIME ANY NUM TIME
A
11b | prvrIvE / TIME ANY NUM TIME
12 | CONCAT DATE TOD DATE TIME_OF DAY DATE_AND TIME

Type conversion functions

a
13" | pr_to_TOD
14" | pr TO DATE

NOTE 1 Non-blank entries in the Symbol column are suitable for use as operators in textual
languages, as shown in tables 52 and 55.

NOTE 2 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to
the output.

NOTE 3 Itis possible to type the functions MULTIME and DIVTIME, e.g., the operands of
MULTIME REAL would be of type TIME and REAL, respectively.

NOTE 4 The effects of conversion between time data types and types STRING and WSTRING
are defined in footnote (e) of table 22.

NOTE 5 The effects of type conversions between time data types and other data types not
defined in this table are implementation-dependent.

® The type conversion functions shall have the effect of “extracting” the appropriate data, e.g., the
ST language statements

X := DT#1986-04-28-08:40:00 ;
Y := DT TO TOD(X) ;
W := DT_TO DATE (X);

shall have the same result as the statements

X := DT#1986-04-28-08:40:00 ;
W := DATE#1986-04-28 ;
Y := TIME OF DAY#08:40:00;.

® This usage is deprecated and will not be included in future editions of this standard.

° When the named representation of a function is supported, this shall be indicated by the suffix “n”
in the compliance statement. For example, “1n” represents the notation “ADD”.
¢ When the symbolic representation of a function is supported, this shall be indicated by the suffix

s” in the compliance statement. For example, “1s” represents the notation “+”.

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 65

EN 61131-3:2002

2.5.1.5.7 Functions of enumerated data types

The selection and comparison functions listed in table 31 can be applied to inputs which are of an\

enumerated data type as defined in 2.3.3.1. 0((\

.

Table 31 - Functions of enumerated data types Qes
A\

No. Name Symbol Feature No. in table MS"
1| se O
N
2 MUX ‘\‘\‘ ‘G 4
3 | ®0 ~ N b ’
R 10

NOTE Th{ MWions of NOTES 1-2 of table 28 apply to this table.
@ The provisions of footnotes a and b of table 28 apply to this feature.

2.5.2 Function blocks

For the purposes of programmable controller programming languages, a function block is a program
organization unit which, when executed, yields one or more values. Multiple, named instances
(copies) of a function block can be created. Each instance shall have an associated identifier (the
instance name), and a data structure containing its output and internal variables, and, depending on
the implementation, values of or references to its input variables. All the values of the output variables
and the necessary internal variables of this data structure shall persist from one execution of the
function block to the next; therefore, invocation of a function block with the same arguments (input
variables) need not always yield the same output values.

Only the input and output variables shall be accessible outside of an instance of a function block, i.e.,
the function block's internal variables shall be hidden from the user of the function block.

Execution of the operations of a function block shall be invoked as defined in clause 3 for textual
languages, according to the rules of network evaluation given in clause 4 for graphic languages, or
under the control of sequential function chart (SFC) elements as defined in 2.6.

Any function block type which has already been declared can be used in the declaration of another
function block type or program type as shown in figure 3.

The scope of an instance of a function block shall be local to the program organization unit in which it
is instantiated, unless it is declared to be global in a VAR _GLOBAL block as defined in 2.7.1.

As illustrated in 2.5.2.2, the instance name of a function block instance can be used as the input to a
function or function block if declared as an input variable in a VAR INPUT declaration, or as an
input/output variable of a function block in a VAR IN OUT declaration, as defined in 2.4.3.

The maximum number of function block types and instantiations for a given resource are
implementation-dependent parameters.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 66
EN 61131-3:2002

2.5.2.1 Representation

As illustrated in figure 9, an instance of a function block can be created textually, by declaring a ?@\
element using the declared function block type in a VAR. . .END VAR construct, identically C
of a structured data type, as defined in 2.4.3.

As further illustrated in figure 9, an instance of a function block can be create@ ally, by using a
graphic representation of the function block, with the function block ty de the block, and
the instance name above the block, following the rules for repres i unctions given in 2.5.1.1.

As shown in figure 9, input and output variables of an in
as elements of structured data types as defined in 2

function block can be represented

efined in table 19 is supported for function blocks, it

If either of the two graphical negatlon
fined in 2.5.1, and vice versa.

shall also be supported for functlﬂ'lv

Graphical (FBD Ianguage) Textual (ST language)
FF75 VAR FF75: SR; END VAR (* Declaration *)
R +
| SR | FF75(51:=%IX1, R:=%IX2); (* Invocation *)
$IX1---]1S1 Q1]|---%0QX3 $QX3 := FF75.01 ; (* Assign Output *)
$IX2---|R |
R +
MyTon VAR a,b,r,out : BOOL; MyTon : TON; END VAR
R +
MyTon (EN := NOT (a <> b),
tmm——t | TON |
IN := r,
a--| NE |---O|EN ENO|--
NOT Q => out);
b-——| | r--1IN Q| 0-out
+---—+ -—|PT  ET|--
R +

IEC 2479/02

Figure 9 - Function block instantiation examples

Assignment of a value to an output variable of a function block is not allowed except from within the
function block. The assignment of a value to the input of a function block is permitted only as part of
the invocation of the function block. Unassigned or unconnected inputs of a function block shall keep
their initialized values or the values from the latest previous invocation, if any. Allowable usages of
function block inputs and outputs are summarized in table 32, using the function block FF75 of type
SR shown in figure 9. The examples are shown in the ST language.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 67

EN 61131-3:2002

Table 32 - Examples of function block /O variable usage

Usage Inside function block

Input read IF IN1 THEN ... Not allowed (Notes 1 and ?-)\
P

Outside function block
\

Input assignment Not allowed (Note 1)

FB INST(IN1:=3, I%% \Jv

Output read OUT := OUT AND NOT IN2; := FB \T\ "

Output assignment ouT := 1; A~ Qﬂowed (Note 1)

: -
In-out read IF INOUT THEN ... A \(\U‘I'F FB1.INOUT THEN...

In-out assignment INOUT := OUT OR INIg FB_INST (INOUT:=D) ;

NOTE 1 Those usages listed a

dependent, unpredlctab

NOTE 2 Reading a of input, output and internal variables of a function block may
be performed by t communlcatlon function”, “operator interface function”, or the

“programming, testing, and monitoring functions” defined in IEC 61131-1.

NOTE 3 As illustrated in 2.5.2.2, modification within the function block of a variable declared

ina VAR _IN OUT block is permitted.

2.5.2.1a) Use of EN and ENO in function blocks

As shown in table 20 for functions, for function blocks an additional Boolean EN (Enable) input or ENO
(Enable Out) output, or both, can also be provided by the manufacturer or user according to the

declarations
VAR INPUT EN: BOOL := 1; END VAR
VAR OUTPUT ENO: BOOL; END VAR

When these variables are used, the execution of the operations defined by the function block shall be
controlled according to the following rules:

1) If the value of EN is FALSE (0) when the function block instance is invoked, the assignments
of actual values to the function block inputs may or may not be made in an implementation-
dependent fashion, the operations defined by the function block body shall not be executed
and the value of ENO shall be reset to FALSE ) by the programmable controller system.

2) Otherwise, the value of ENO shall be set to TRUE ) by the programmable controller system,
the assignments of actual values to the function block inputs shall be made and the operations
defined by the function block body shall be executed. These operations can include the
assignment of a Boolean value to ENO.

3) If the ENO output is evaluated to FALSE (0), the values of the function block outputs
(VAR_OUTPUT) keep their states from the previous invocation.

NOTE It is a consequence of these rules that the ENO output of a function block must be explicitly
examined by the invoking entity if necessary to account for possible error conditions.

EXAMPLES The figures below illustrate the use of EN and ENO in association with the standard
TP, TON and TOF blocks (represented by T+*) defined in subclause 2.5.2.3.4, and the
CTU and CTD blocks (represented by cT*) defined in subclause 2.5.2.3.3. In accordance
with the above rules, a FALSE value of the EN input may be used to “freeze” the operation
of the associated function block; that is, the output values do not change irrespective of
changes in any of the other input values. When the EN input value becomes TRUE, normal



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 68
EN 61131-3:2002

operation of the function block may resume. The value of the ENO output is FALSE after
each evaluation of the function block for which the EN input is FALSE. When EN is TRUE, a
TRUE value of ENO reflects a normal evaluation of the block, and a FALSE value of ENO\

may be used to indicate an implementation-dependent error condition. ((\
R . R (,0
[ T** | |

BOOL---|EN ENO|---BOOL BOOL--- IEN ENO | - —

BOOL---| IN Q|---BOOL BOOL--->CU

TIME---|PT ET|---TIME BOOL———Iéa ———INT
- + IN“\

_ \
2.5.2.2 Declaration \\\’\Q \

As illustrated in figure 10, a function block shall be declared textually or graphically in the same
manner as defined for functions in 2.5.1.3, with the differences described below and summarized in
table 33:

1) The delimiting keywords  for  declaration of function blocks shall be
FUNCTION BLOCK...END FUNCTION BLOCK.

2) The RETAIN qualifier defined in 2.4.3 can be used for internal and output variables of a function
block, as shown in features 1, 2, and 3 in table 33.

3) The values of variables which are passed to the function block via a VAR EXTERNAL construct
can be modified from within the function block, as shown in feature 10 of table 33.

4) The output values of a function block instance whose name is passed into the function block via
a VAR INPUT, VAR _IN OUT, or VAR EXTERNAL construct can be accessed, but not modified,
from within the function block, as shown in features 5, 6, and 7 of table 33.

5) A function block whose instance name is passed into the function block via a VAR _IN OUT or
VAR EXTERNAL construction can be invoked from inside the function block, as shown in
features 6 and 7 of table 33.

6) In textual declarations, the R EDGE and F_EDGE qualifiers can be used to indicate an edge-
detection function on Boolean inputs. This shall cause the implicit declaration of a function
block of type R _TRIG or F_TRIG, respectively, as defined in 2.5.2.3.2, to perform the required
edge detection. For an example of this construction, see features 8a and 8b of table 33 and the
accompanying NOTE.

7) The construction illustrated in features 9a and 9b of table 33 shall be used in graphical
declarations for rising and falling edge detection. When the character set defined in 2.1.1 is
used, the “greater than” (>) or “less than” (<) character shall be in line with the edge of the
function block. When graphic or semigraphic representations are employed, the notation of IEC
60617-12 for dynamic inputs shall be used.

8) If the generic data types given in table 11 are used in the declaration of standard function block
inputs and outputs, then the rules for inferring the actual types of the outputs of such function
block types shall be part of the function block type definition. In textual invocations of such
function blocks assignments of the outputs to variables shall be made directly in the invocation
statement (using the operator ‘=>).

9) The asterisk notation (feature No. 10 in table 15) can be used in the declaration of internal
variables of a function block.

10) EN/ENO inputs and outputs shall be declared and used as described in 2.5.1.2a).

11) It shall be an error if no value is specified for: (i) an in-out variable of a function block instance;
(i) a function block instance used as an input variable of another function block instance.



Page 69
EN 61131-3:2002

As illustrated in figure 12, only variables or function block instance names can be passed into a
function block via the VAR IN OUT construct, i.e., function or function block outputs cannot be passed
via this construction. This is to prevent the inadvertent modifications of such outputs. However,
“cascading” of VAR _IN OUT constructions is permitted, as illustrated in figure 12 c). \

(* a) Textual declaration in ST language (see 3.3) *) 66‘
FUNCTION BLOCK DEBOUNCE \)g
(*** External Interface ***) g
VAR _INPUT
IN : BOOL ; (* Def %
DB TIME : TIME := t#10ms ; t#lOmS *)

END VAR
VAR OUTPUT OUT : BOOL Default = 0 *)
ET OFF : TIME \ (* Default = t#0s *)

END VAR . CX\\'Q

VAR DB ON (** Internal Variables **)
DB OFF : TON ; (** and FB Instances **)
DB FF : SR ;

END VAR

(** Function Block Body **)

DB ON(IN := IN, PT := DB TIME) ;

DB OFF (IN := NOT IN, PT:=DB TIME) ;
DB FF(S1 :=DB ON.Q, R := DB OFF.Q) ;
OUT := DB FF.Q ;

ET OFF := DB OFF.ET ;

END FUNCTION BLOCK

(* b) Graphical declaration in FBD language (see 4.3) *)

FUNCTION_ BLOCK
(** External Interface **)

| DEBOUNCE |
BOOL---|IN OUT | -—--BOOL
TIME---|DB TIME ET OFF|---TIME

| TON | | SR |
IN-———+—————— [IN Q|--—--- |S1 Q|---0UT
| +---|PT ET| +--|R |
|
|
|
|
|

! | A
| |
| DB OFF |
| |
|

| | TON |
+--|--0|IN Q|--+
DB _TIME--+---|PT ET|-------————--- ET OFF

END FUNCTION BLOCK

IEC 2480/02

Figure 10 - Examples of function block declarations

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 70

EN 61131-3:2002

Table 33 - Function block declaration and usage features

No. Description Example
e . . U\ d
1a RETAIN qualifier on internal variables | VAR RETAIN X : REAL ; END VAR ~
A J
1b NON RETAIN qualifier on internal VAR NON_RETAIN X : REA{)W
variables AA
2a RETAIN qualifier on output variables VAR OUTPUTKEHIN\Q: REAL ; END VAR
2b RETAIN qualifier on input variables VAR{R}(&\ TAIN X : REAL ; END VAR
2c RETAIN qualifier on output varlablqé _OUTPUT NON RETAIN X : REAL ; END VAR
2d RETAIN qualifier on mputy:\‘a\‘é& VAR INPUT NON RETAIN X : REAL ; END VAR
3a RETAIN quallflerMqunctlon blocks VAR RETAIN TMR1: TON ; END VAR
3b |NON RETAIN qual|f|er on internal function blocks | VAR NON RETAIN TMR1: TON ; END VAR
4a VAR IN OUT declaration (textual) VAR IN OUT A: INT ; END VAR
4b VAR IN OUT declaration and usage(graphical) See figure 12
4c | VAR IN OUT declaration with assignment to different variables (graphical) | See figure 12d
5a Function block instance name as input VAR INPUT I_TMR: TON ; END VAR
(textual) EXPIRED := I TMR.Q; (* Note 1 *)
5b Function block instance name as input (graphical) | See figure 11a
6a Function block instance name as VAR TN OUT IO TMR: TOF ; END VAR
VAR_IN_OUT (textual) IO TMR(IN:=A VAR, PT:=T#10S);
EXPIRED := IO TMR.Q; (* Note 1 *)
6b Function block instance name as VAR _IN OUT (graphical) See figure 11b
7a Function block instance name as external VAR EXTERNAL EX TMR : TOF ;END VAR
variable (textual) EX TMR(IN:=A VAR, PT:=T#10S);
EXPIRED := EX TMR.Q; (* Note 1 *)
7b Function block instance name as external variable (graphical) | See figure 11c
Textual declaration of: | FuncTION BLOCK AND EDGE (* Note 2 *)
8a rising edge inputs VAR INPUT X : BOOL R _EDGE;
8b falling edge inputs Y : BOOL F EDGE;
END VAR
VAR OUTPUT Z : BOOL ; END VAR
Z := X AND Y ; (* ST language example *)
END FUNCTION BLOCK (*- see 3.3 *)
FUNCTION BLOCK (* Note 2 *)
+-——— + (* External interface *)
Graphical declaration of: | AND EDGE |
9a rising edge inputs BOOL——-->X 7 | ———BOOL
. . I |
9b falling edge inputs BOOL————<Y |
| |
fomm - +
+———+ (* Function block body *)
X-==1 & |---2 (* FBD language example *)
Y- | (* - see 4.3 *)
+-——1
END FUNCTION BLOCK
10a VAR_EXTERNAL declarations within function block type declarations




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 71

EN 61131-3:2002

Table 33 - Function block declaration and usage features

No. Description Example «d\
10b VAR _EXTERNAIL CONSTANT declarations within function block type decla@liou@\)‘ ¥
11 VAR TEMP declarations (see 2.4.3) within function block type deﬁ@ﬁ *

NOTE 1 Itis assumed in these examples that the variables EXPIRE Wﬁ) have been
declared of type BOOL. @

NOTE 2 The declaration of function block AND EDGE ux\ﬂgb\ € examples is equivalent to:

FUNCTION BLOCK AND EDGE
VAR INPUT X : BOOL; Y :
VAR X TRIG : R _ TRIG

X TRIG(CLK :=
Y TRIG(CLK
:= X TRIG. ND Y TRIG.Q;

ENDiFUNCTIONiBLOCK

‘
AR

: F_TRIG ; END VAR

BO

See 2.5.2.3.2 for the definition of the edge detection function blocks R_TRIG and
F_TRIG.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 72
EN 61131-3:2002

FUNCTION BLOCK

Fo——— + (* External interface *) G
| INSIDE A | 6 .
TON---|I TMR EXPIRED|---BOOL ge
T + 6'\)
O
o + (* Function Block oéma
| MOVE | G?\
I _TMR.Q---| | --—EXPIRED .
t————— +
END FUNCTION BLOCK . \\
N
FUNCTION BLOCK “\\
Fomm + (* External interface *)
| EXAMPLE A |
BOOL---|GO DONE | ——-BOOL
o — +
E TMR (* Function Block body *)
tmm——m + I BLK
| TON | oo +
GO---]IN Q] | INSIDE A |
t#100ms---|PT ET| E TMR---|I TMR EXPIRED|---DONE
+————= + o +
END FUNCTION BLOCK

IEC 2481/02

NOTE I TMR is not represented graphically in this figure since this would imply invocation of
I TMR within INSIDE A, which is forbidden by rules 4) and 5) of 2.5.2.2. See also
feature. 5 a) of table 33.

Figure 11 a) - Graphical use of a function block name as an input variable
(table 33, feature 5b)



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 73

EN 61131-3:2002

FUNCTION BLOCK
Fomm + (* External interface *)
| INSIDE B |

TON---|I TMR----I TMR|---TON 66 ‘G

BOOL-- | TMR_GO EXPTRED|---BOOL g
T + a'\)
Q9
I TMR (* Function B ocf\ﬁa)
oo + G
| TON | .

TMR GO--|IN Q|---EXPIRED
|PT ET|

o\

* \
+————— \ .
END FUNCTION BLO &
)

FUNCTION BLOCK

Fomm + (* External interface *)
| EXAMPLE B |
BOOL---1GO DONE | ---BOOL
Fm e +
E TMR (* Function Block body *)
tmm——m + I BLK
| TON | e e T +
[IN Q] | INSIDE B |
t#100ms---|PT ET| E TMR---|I TMR----- I_TMR]|
t————= + GO-=———- |TMR GO EXPIRED|---DONE
Fmm e +

END FUNCTION BLOCK

Figure 11 b) - Graphical use of a function block name as an in-out variable
(table 33, feature 6b)

IEC 2482/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 74

EN 61131-3:2002

FUNCTION BLOCK
e + (* External interface *)
| INSIDE C |
BOOL--|TMR GO EXPIRED|---BOOL 66

VAR EXTERNAL X TMR : TON ; END VAR a'\)g
Q)
X_TMR (* Function BJ?C{\@&)
A G

| TON |
TMR GO---[IN Q] ———EXPIRE]\

.

|PT ET|

> \
+————- + \ .
END FUNCTION BLOCK \
\)

PROGRAM
f——————— + (* External interface *)
| EXAMPLE C |
BOOL---]GO DONE | -—-BOOL

VAR GLOBAL X TMR : TON ; END VAR

I BLK (* Program body *)
o +
| INSIDE C |
GO-—=———- |TMR GO EXPIRED|---DONE
o +

END PROGRAM

NOTE The PROGRAM declaration mechanism is defined in 2.5.3.

Figure 11 c) - Graphical use of a function block name as an external variable
(table 33, feature 7b)

IEC 2483/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 75
EN 61131-3:2002

12a) R e +
| ACCUM | FUNCTION BLOCK ACCUM \
INT--- |A-———- A|---INT VAR IN OUT A : INT ; END ((‘.\
INT---|X | VAR INPUT X : INT ; ENQﬁ
= + A = A+X ; .
=t ENDFUNCTION@Q
A--—| + |---A a
X===| | /g
A d
o
.
12b) Accl G\ A declaration such as
R n * VAR
| ACCUM | & ACC : INT ;
ACCm——mm e |A———=— _‘_\ X1 : INT ;
f—t | ‘\\?' X2 : INT ;
Xlooe| * |___IX\ END_ VAR
X2———| | e + is assumed: the effect of execution is
P ACC := ACCH+X1*X2 ;
12c) ACC1 ACC2 Declarations as in
S — + fo + 12b) are assumed for
| ACCUM | | ACCUM | ACC, X1, X2, X3,
ACCoc e |A-———— N | A-———- A|---ACC and x4.; the effect of
et | fo——t | | execution is
X1-==| * |-==|X | X3=—=] % |-—-IX | ACC ==
XZ———l | e —_— + X4———‘ | [F + ACC+X1*X2+X3*X4;
+-——+ +-——+
12d) ACC1 A declaration such as
o n VAR
| ACCUM | X1 : INT ;
e |A----~- A|-—-X4 X2+ INT ;
b | ’ .X3 : INT H
Xl-—=| * |--=|X | ... X4 : INT ;
X2 | | e N END_VAR o
et is assumed: the effect of execution is
X3 1= X3+X1*X2 ;
X4 := X3 ;
~ -
12e) TS~ o ACC1 P ILLEGAL USAGE!!!
Seggr + ”a” Connection to in-out variable 2 is not a
Xl-——] * T~~kACCUM’J,¢’ variable or function block name (see
X2--=| | ——jg;*:;Ai———Acc preceding text)
+—;;J¢* | ISso
X3gemT—m——— | X | s
-~ 4mmmmm oo + S~
- ~

IEC 2484/02

Figure 12 - Declaration and usage of in-out variables in function blocks

a) Graphical and textual declarations
b), c), d) Legal usage, e) lllegal usage



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 76

EN 61131-3:2002

2.5.2.3 Standard function blocks

Definitions of function blocks common to all programmable controller programming Ianguages

given in this subclause.

Where graphical declarations of standard function blocks are shown in this su

e

% \\equwalent

textual declarations, as specified in 2.5.2.2, can also be written, as for exam I\i} 5.

Standard function blocks may be overloaded and may have e
definitions of such function block types shall describe any
such inputs and outputs. The use of such capabilities

scope of this Standard.

‘\\

e

inputs and outputs. The
n the number and data types of
tandard function blocks is beyond the

2.5.2.3.1 Bistable elemeni .

The graphical form and func¥ \'block body of standard bistable elements are shown in table 34. The
notation for these elements is chosen to be as consistent as possible with symbols 12-09-01 and
12-09-02 of IEC 60617-12.

Table 34 - Standard bistable function blocks ?

No. Graphical form Function block body
1 Bistable function block (set dominant)
o= +
e + Sl-m—m——mmm o | >=1 |---01
| SR | ot |
BOOL---|S1 Q1 |---BOOL R--—--- o] & |--———| \
BOOL---|R | Ql------ I ! |
to———= + ==t to———- +
2 Bistable function block (reset dominant)
to———= + ==t
| RS | Rl-—=—=——————————— o] & |---01
BOOL---|S Q1 |---BOOL e + | \
BOOL---|R1 | S | >=1 |-—-—| \
Fommes + Ql------ ! | I
to———- + ==t

defined in 4.3.

NOTE The function block body is specified in the Function Block Diagram (FBD) language

@ The initial state of the output variable Q1 shall be the normal default value of zero for Boolean
variables.




Page 77
EN 61131-3:2002

2.5.2.3.2 Edge detection

shown in table 35. The behaviors of these blocks shall be equivalent to the definitions glven in
table. This behavior corresponds to the following rules: CJ

A 3
1) The Q output of an R_TRIG function block shall stand at the BOOL#1 val one execution
of the function block to the next, following the 0 to 1 transition of Q ' , and shall return

to 0 at the next execution.

The graphic representation of standard rising- and falling-edge detecting function blocks shall be as\

2) The Q output of an F_TRIG function block shall sﬁ\\@ BOOL#1 value from one execution
of the function block to the next, following t ansition of the CLK input, and shall return
to 0 at the next execution.

AN

W

Tabld 35 - Standard edge detection function blocks

No. Graphical form Definition
(ST language - see 3.3)
1 Rising edge detector
FUNCTION BLOCK R_TRIG
e + VAR INPUT CLK: BOOL; END VAR
| R_TRIG | VAR OUTPUT Q: BOOL; END VAR
BOOL--- | CLK Q| ---BOOL VAR M: BOOL; END VAR
R + Q := CLK AND NOT M;
M := CLK;

END FUNCTION BLOCK

2 Falling edge detector
FUNCTION BLOCK F_TRIG
e + VAR _INPUT CLK: BOOL; END VAR
| F _TRIG | VAR _OUTPUT  Q: BOOL; END VAR
BOOL--- | CLK Q| ---BOOL VAR M: BOOL; END VAR
R + Q := NOT CLK AND NOT M;

M := NOT CLK;
END FUNCTION BLOCK

NOTE When the CLK input of an instance of the R_TRIG type is connected to a value of
BOOL#1, its © output will stand at BOOL#1 after its first execution following a “cold restart”
as described in 2.4.2. The ¢ output will stand at BOOL#0 following all subsequent
executions. The same applies to an F_TRIG instance whose CLK input is disconnected
or is connected to a value of FALSE.

2.5.2.3.3 Counters

The graphic representations of standard counter function blocks, with the types of the associated
inputs and outputs, shall be as shown in table 36. The operation of these function blocks shall be as
specified in the corresponding function block bodies.

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 78

EN 61131-3:2002

Table 36 - Standard counter function blocks

O\
No. Graphical form Function block body GO\ ’
(ST language - see .
Up-counter . Q\)
| %ad
1a FRE—— + IF R THEN cave\é;
| CTU | ELST 2\ CV < PVmax)
BOOL--->CU Q|---BOOL CV := CV+1;
BOOL---|R | N?N _IE
INT---|PV CV|---INT Q := (CV >= PV) ;
—
Vo -+
1b +o——m - ‘%\,\) Same as 1a
| CTUiDﬁl
BOOL--->CU Q|---BOOL
BOOL---|R [
DINT---| PV CV|---DINT
fom +
1c - + Same as 1a
| CTU LINT |
BOOL--->CU Q|---BOOL
BOOL---|R |
LINT---|PV CV|---LINT
fom +
1d SO —— + Same as 1a
| CTU UDINT |
BOOL--->CU Q|---BOOL
BOOL---|R [
UDINT---|PV CV|---UDINT
fom +
1e SO —— + Same as 1a
| CTU ULINT |
BOOL--->CU Q|---BOOL
BOOL---|R |
ULINT---|PV CV|---ULINT
fom +
Down-counter
2a PR + IF LD THEN CV := PV ;
| CTD | ELSIF CD AND (CV > PVmin)
BOOL--->CD Q|---BOOL THEN CV := CV-1;
BOOL---|LD | END_IF ;
INT---|PV CV|---INT Q := (CV <= 0) ;
F——— +
2b o ¥ Same as 2a
| CTD DINT |
BOOL--->CD Q| ---BOOL
BOOL---|LD
DINT---| PV CV|---DINT
Fomm - +




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Table 36 - Standard counter function blocks

Page 79
EN 61131-3:2002

No. Graphical form Function block body
(ST language - see 3.3) A
2c o + Same as 2a 6 ‘\JV
| CID LINT | e
BOOL--->CD Q| ---BOOL \)g
BOOL---|LD | ’ga'
LINT---|PV CV|---LINT . (\a
fom + ~ ¢ \
2d o + N ‘V Same as 2a
| CTD UDINT | N
BOOL--->CD Q| ---B AP
BOOL---|LD ’* .
UDINT---| PV wb —%-UDINT
fom +
2e I n Same as 2a
| CID ULINT |
BOOL--->CD Q| ---BOOL
BOOL---|LD [
ULINT---|PV CV|---ULINT
fom +
Up-down counter
3a R + IF R THEN CV := 0 ;
| CTUD | ELSIF LD THEN CV := PV ;
BOOL--->CU QU|---BOOL ELSE
BOOL--->CD QD|---BOOL IF NOT (CU AND CD) THEN
BOOL---|R | IF CU AND (CV < PVmax)
BOOL---|LD | THEN CV := CV+1;
INT---|PV CV|---INT ELSIF CD AND (CV > PVmin)
pmmm + THEN CV := CV-1;
END IF;
END IF;
END IF ;
QU := (CV >= PV) ;
QD := (CV <= 0) :
3b I n Same as 3a
| CTUD DINT |
BOOL--->CU QU | ---BOOL
BOOL--->CD QD|---BOOL
BOOL---|R [
BOOL---|LD [
DINT---| PV CV|---DINT
fom +
3c I n Same as 3a
| CTUD_LINT |
BOOL--->CU QU | ---BOOL
BOOL--->CD QD|---BOOL
BOOL---|R [
BOOL---|LD [
LINT---|PV CV|---LINT
fom +




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 80
EN 61131-3:2002

Table 36 - Standard counter function blocks

No. Graphical form Function block body \
(ST language - see 3.3) {\"({
3d e _ n Same as 3a 6 ‘\JV
| CTUD ULINT |
BOOL--->CU QU | ---BOOL a\)g
BOOL--->CD QD | ---BOOL

9
BOOL———|R | . “a
BOOL---|LD | ‘\\
ULINT---|PV CV|---ULINT N G
.
Fom—————— +
4 I N ‘\

NOTE The numerical values of the‘l\r\f\mia les Pvmin and PVmax are implementation-
dependent. ‘*’(0 .
A%\

2.5.2.3.4 Timers

The graphic form for standard timer function blocks shall be as shown in table 37. The operation of
these function blocks shall be as defined in the timing diagrams given in table 38.

Table 37 - Standard timer function blocks

No. Description Graphical form
1 *** is: TP (Pulse) tomm - +
2 | * Kk K* I
a TON (On-delay)
BOOL--- | IN Q| ---BOOL
a
2b T---0 (On-delay) TIME---|PT  ET|---TIME
fomm - +
3a TOF  (Off-delay)
a
3b 0---T (Off-delay)

NOTE The effect of a change in the value of the PT input during the timing operation, e.g., the
setting of PT to t#0s to reset the operation of a TP instance, is an implementation-
dependent parameter.

% In textual languages, features 2b and 3b shall not be used.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Table 38 - Standard timer function blocks - timing diagrams

Pulse (TP) timing

fomm + T +

IN | | NN | | iag&)szb

Q I
TR o \ N D\ I
t0  tO+PT +PT t4  t4+PT
PT -\’\'Q + ot
: “ | /| / |
ET : / | /| /
N | /] / |
: / | / | / |
0-+ t————= + +-—+ f————
t0 tl t2 t4 t5
On-delay (TON) timing
fomm————— + +-——1 Fomm +
IN | | | | I |
-——+ fomm————— + +-——+ Fom
t0 tl t2 t3 t4 t5
+———+ +-——1
Q | I I I
——————— + T it T Fom
tO+PT t1 t4+4PT  t5
PT ot et
/ | + / |
ET / | /1 /
/ | /1 /
/ | /| /
0-+ fomm + +-——+ Fom e
t0 tl t2 t3 t4 t5
Off-delay (TOF) timing
Fom + +-——1 e +
IN | | | | I I
-———4 fomm————— + +———+ Fom -
t0 tl t2 t3 t4 t5
Fom e + o +
Q | I I I
-———4 +-——+ o
t0 t1+PT t2 t5+PT
PT ot R
/ | + /
ET / | /1 /
/ [ /| /
: / | /] /
0-——————————= + +-——1 e it +
tl t3 t5

Page 81

EN 61131-3:2002

o«‘\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 82

EN 61131-3:2002

2.5.2.3.5 Communication function blocks

Standard communication function blocks for programmable controllers are defined in IEC 61131-5.
These function blocks provide programmable communications functionality such as device ver|f|ca
polled data acquisition, programmed data acquisition, parametric control, mterlocket
programmed alarm reporting, and connection management and protection. 66

2.5.3 Programs g

A program is defined in IEC 61131-1 as a “logical assemm\“e programming language elements
and constructs necessary for the intended signal required for the control of a machine or

process by a programmable controller syste

Subclause 1.4.1 of this part de h place of programs in the overall software model of a
programmable controller; s 2 describes the means available for inter- and intra-program
communication; and subcla descrlbes the overall process of program development.

The declaration and usage of programs is identical to that of function blocks as defined in 2.5.2.1 and
2.5.2.2, with the additional features shown in table 39 and the following differences:

1) The delimiting keywords for program declarations shall be PROGRAM. . . END PROGRAM.

2) A program can contain a VAR _ACCESS...END VAR construction, which provides a means of
specifying named variables which can be accessed by some of the communication services
specified in IEC 61131-5. An access path associates each such variable with an input, output or
internal variable of the program. The format and usage of this declaration shall be as described in
2.7.1andin IEC 61131-5.

3) Programs can only be instantiated within resources, as defined in 2.7.1, while function blocks can
only be instantiated within programs or other function blocks.

4) A program can contain location assignments as described in 2.4.3.1 and 2.4.3.2 in the
declarations of its global and internal variables. Location assignments with not fully specified direct
representation as described in 2.4.1.1 and 2.4.3.1 can only be used in the declaration of internal
variables of a program.

The declaration and use of programs are illustrated in figure 19, and in examples F.7 and F.8.

Limitations on the size of programs in a particular resource are implementation-dependent parameters.

Table 39 - Program declaration features

No. DESCRIPTION

1to9b Same as features 1 to 9b, respectively, of table 33

10 Formal input and output variables

11to 14 | Same as features 1 to 4, respectively, of table 17

15t0 18 | Same as features 1 to 4, respectively, of table 18

19 Use of directly represented variables (subclause 2.4.1.1)

20 VAR GLOBAL...END_ VAR declaration within a PROGRAM (see 2.4.3 and 2.7.1)
21 VAR ACCESS...END_VAR declaration within a PROGRAM

22a VAR EXTERNAL declarations within PROGRAM type declarations

22b VAR EXTERNAL CONSTANT declarations within PROGRAM type declarations

23 VAR _GLOBAL CONSTANT declarations within PROGRAM type declarations

24 VAR TEMP declarations (see 2.4.3) within PROGRAM type declarations




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 83

EN 61131-3:2002

2.6 Sequential Function Chart (SFC) elements

2.6.1 General \
|

This subclause defines sequential function chart (SFC) elements for use in structuring the j
organization of a programmable controller program organization unit, written in one of e lanediges

defined in this standard, for the purpose of performing sequential control functions efinitions in
this subclause are derived from IEC 60848, with the changes necessary to co V presentahons
from a documentation standard to a set of execution control e/ements mable controller

program organization unit.

The SFC elements provide a means of partitioning a pm\ga\yle controller program organization
unit into a set of steps and transitions interconnecteg by ed links. Associated with each step is a

set of actions, and with each transition is ass ransition condition.

Since SFC elements require stora e‘o\} information, the only program organization units which
can be structured using thei(e ts 'are function blocks and programs.

If any part of a program nization unit is partitioned into SFC elements, the entire program
organization unit shall be so partitioned. If no SFC partitioning is given for a program organization
unit, the entire program organization unit shall be considered to be a single action which executes
under the control of the invoking entity.

2.6.2 Steps

A step represents a situation in which the behavior of a program organization unit with respect to its
inputs and outputs follows a set of rules defined by the associated actions of the step. A step is either
active or inactive. At any given moment, the state of the program organization unit is defined by the
set of active steps and the values of its internal and output variables.

As shown in table 40, a step shall be represented graphically by a block containing a step name in the
form of an identifier as defined in 2.1.2, or textually by a STEP...END STEP construction. The
directed link(s) into the step can be represented graphically by a vertical line attached to the top of the
step. The directed link(s) out of the step can be represented by a vertical line attached to the bottom
of the step. Alternatively, the directed links can be represented textually by the TRANSITION. ..
END TRANSITION construction defined in 2.6.3.

The step flag (active or inactive state of a step) can be represented by the logic value of a Boolean
structure element *** X, where *** is the step name, as shown in table 40. This Boolean variable
has the value 1 when the corresponding step is active, and 0 when it is inactive. The state of this
variable is available for graphical connection at the right side of the step as shown in table 40.

Similarly, the elapsed time, *** | T, since initiation of a step can be represented by a structure element
of type TIME, as shown in table 40. When a step is deactivated, the value of the step elapsed time
shall remain at the value it had when the step was deactivated. When a step is activated, the value of
the step elapsed time shall be reset to t#0s.

The scope of step names, step flags, and step times shall be /ocal to the program organization unit in
which the steps appear.

The initial state of the program organization unit is represented by the initial values of its internal and
output variables, and by its set of initial steps, i.e., the steps which are initially active. Each SFC
network, or its textual equivalent, shall have exactly one initial step.

An initial step can be drawn graphically with double lines for the borders. When the character set
defined in 2.1.1 is used for drawing, the initial step shall be drawn as shown in table 40.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 84
EN 61131-3:2002

For system initialization as defined in 2.4.2, the default initial elapsed time for steps is t#0s, and the

default initial state is BOOL#0 for ordinary steps and BOOL#1 for initial steps.

However, when an

instance of a function block or a program is declared to be retentive (for instance, as in feature 3 of

table 33), the states and (if supported) elapsed times of all steps contained in the program or fun
block shall be treated as retentive for system initialization as defined in 2.4.2.

The maximum number of steps per SFC and the precision of step elapsed tim\e)Q

dependent parameters.

It shall be an error if:

1) an SFC network does not contain exactly one initial
2) auser program attempts to assign a value djr

|

C

P
e
t(x’e step state or the step time.

0™~ Step features

a0

.
mentation-

“

No. | REPRESENTATMR)|: DESCRIPTION
A\
1 |
PR n Step - graphical form
| xkk | with directed links
b : "*x*1" = step name
|
| Initial step - graphical form with directed links
S —— mexkm — ngme of initial step
[oxx* ]
[ [
f=======+
|
2 | STEP **x Step - textual form
(* Step body *) without directed links (see 2.6.3)
END STEP "xxxt = step name
INITIAL STEP *** : Initial step - textual form
without directed links (see 2.6.3)
(* Step body *) wkxxm = name of initial step
END STEP
Step flag - general form
3a? | wxx.x "xxx1 = step name
**x* ¥ = BOOL#1 when *** is active, BOOL#0 otherwise
|
PR n Step flag - direct connection
3b*? | kx| —mee of Boolean variable *+**.X to
PR ¥ right side of step "**x*"
|
Step elapsed time - general form
4% | s 7 "xkx " = step name
*** T = g variable of type TIME
(See 2.6.2)
NOTE The upper directed link to an initial step is not present if it has no predecessors.
@ When feature 3a, 3b, or 4 is supported, it shall be an error if the user program attempts
to modify the associated variable. For example, if S4 is a step nhame, then the following
statements would be errors in the ST language defined in 3.3:
S4.X := 1 ; (* ERROR *)
S4.T := t#100ms ; (* ERROR *)




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 85
EN 61131-3:2002

2.6.3 Transitions

A transition represents the condition whereby control passes from one or more steps preceding the
transition to one or more successor steps along the corresponding directed link. The transmon

be represented by a horizontal line across the vertical directed link. CJ
The direction of evolution following the directed links shall be from the botto r:adecessor
step(s) to the top of the successor step(s).

Each transition shall have an associated transition condn‘/on sult of the evaluation of a
single Boolean expression. A transition condition wh| 'S true shall be represented by the
symbol 1 or the keyword TRUE.

A transition condition can be assoaate ' ransition by one of the following means, as shown in
table 41:

1) By placing the approp)g\ggean expression in the ST language defined in 3.3 physically or
logically adjacent to the Vertical directed link.

2) By a ladder diagram network in the LD language defined in 4.2, physically or logically adjacent to
the vertical directed link.

3) By a network in the FBD language defined in 4.3, physically or logically adjacent to the vertical
directed link.

4) By a LD or FBD network whose output intersects the vertical directed link via a connector as
defined in 4.1.1.
5) Bya TRANSITION...END TRANSITION construct using the ST language. This shall consist of:

- the keywords TRANSITION FROM followed by the step name of the predecessor step (or, if there
is more than one predecessor, by a parenthesized list of predecessor steps);

- the keyword TO followed by the step name of the successor step (or, if there is more than one
successor, by a parenthesized list of successor steps);

- the assignment operator (: =), followed by a Boolean expression in the ST language, specifying
the transition condition;

- the terminating keyword END TRANSITION.

6) By a TRANSITION...END TRANSITION construct using the IL language defined in 3.2. This
shall consist of:

- the keywords TRANSTITION FROM followed by the step name of the predecessor step (or, if there
is more than one predecessor, by a parenthesized list of predecessor steps), followed by a
colon (:);

- the keyword TO followed by the step name of the successor step (or, if there is more than one
successor, by a parenthesized list of successor steps);

- beginning on a separate line, a list of instructions in the IL language, the result of whose
evaluation determines the transition condition;

- the terminating keyword END TRANSITION on a separate line.

7) By the use of a transition name in the form of an identifier to the right of the directed link. This
identifier shall refer to a TRANSITION...END TRANSITION construction defining one of the
following entities, whose evaluation shall result in the assignment of a Boolean value to the
variable denoted by the transition name:

- a network in the LD or FBD language;
- a list of instructions in the IL language;
- an assignment of a Boolean expression in the ST language.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 86
EN 61131-3:2002

The scope of a transition name shall be local to the program organization unit in which the transition is

located.

It shall be an error in the sense of 1.5.1 if any “side effect” (for instance, the assignment of a vaI

a variable other than the transition name) occurs during the evaluation of a transition conditio

The maximum number of transitions per SFC and per step are lmpl\ri

parameters.

Table 41 - Transitions and tratﬂc!e&ndltlons

No. Example Description
| STEP \,\Q Predecessor step
a | Transition condition physically or
1 + %IX2.4 & %IX2.3 logically adjacent to the transition
| using ST language (see 3.3)
to———- +
| STEPS | Successor step
to———- +
|
|
F=———- +
| STEP7 | Predecessor step
F=———- +
a | %IX2.4 3%IX2.3 | Transition condition physically or
2 el I | |-=——=——- + logically adjacent to the transition
[ | using LD language (see 4.2)
F=———- +
| STEPS | Successor step
F=———- +
|
|
F=———- +
| STEP7 | Predecessor step
Fo——— + +
a | & | | Transition condition physically or
3 $IX2.4---| |————- + logically adjacent to the transition
$IX2.3---] | | using FBD language
ommm + m———— + (see 4.3)
| STEPS |
R + Successor step
|

-dependent




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 87
EN 61131-3:2002

Table 41 - Transitions and transition conditions

! Use of connector: \
to———- +
| STEP7 | predecessor %D‘CJ
T * g@
. | \
>TRANX>————————————— + Ion connector
Aa’
! .
to———= + ‘\\‘\
| STEPS| G successor step
. + *
. . A LI " -
| %$IX2.4 /ﬁb . Transition condition:
4a +-—= | --X ->TRANX> Using LD language
| (see 4.2)
Fom——— +
| & |
4b SIX2.4-——| | -—>TRANX> Using FBD language
$IX2.3-——| | (see 4.3)
Fom——— +
STEP STEP7: END STEP _
5° Textual equivalent
TRANSITION FROM STEP7 TO STEPS of feature 1
= %IX2.4 & %$IX2.3 ; using ST |anguage
END_TRANSITION (see 3.3)
STEP STEP8: END STEP
STEP STEP7: END STEP _
b Textual equivalent
6 TRANSITION FROM STEP7 TO STEP 8: of feature 1
LD 3IX2.4 using IL language
AND $%IX2.3 (see 3_2)
END_ TRANSITION
STEP STEP8: END STEP
| Use of transition name:
to———= +
| STEP7 | predecessor step
to———= +
A |
7 age
+ TRAN78 transition name
|
to———= +
| STEPS | successor step
to———= +
|
TRANSITION TRAN78 FROM STEP7 TO STEPS:
| \ Transition condition
| %$IX2.4 %IX2.3 TRAN78 | using LD language
7a

| | mmmm | ===~ ()=t

END TRANSITION

(see 4.2)




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 88

EN 61131-3:2002

Table 41 - Transitions and transition conditions

TRANSITION TRAN78 FROM STEP7 TO STEP8: \
fo—m———— +
7b & Transition con nc
$IX2.4-—-] | -—TRAN78 using FB
$IX2.3---| | QS)
fo—— - +
END_ TRANSITION a’
7c TRANSITION TRAN78 FROM STEP7 TO STEPC‘\\‘ Transition condition
LD  %$IX2.4 using IL language
AND $IX2.3 (see 3.2)
END TRANSITION \\
7d TRANSITION OM STEP7 TO STEP8 Transition condition using
1= $IX2.4 S\MX2.3 ; ST language (see 3.3)
ENDiTRANSITION

2 If feature 1 of table 40 is supported, then one or more of features 1, 2, 3, 4, or 7 of this
table shall be supported.

® |f feature 2 of table 40 is supported, then feature 5 or 6 of this table, or both, shall be
supported.

2.6.4 Actions

Zero or more actions shall be associated with each step. A step which has zero associated actions
shall be considered as having a WAIT function, that is, waiting for a successor transition condition to
become true.

An action can be a Boolean variable, a collection of instructions in the IL language defined in 3.2, a
collection of statements in the ST language defined in 3.3, a collection of rungs in the LD language
defined in 4.2, a collection of networks in the FBD language defined in 4.3, or a sequential function
chart (SFC) organized as defined in 2.6.

Actions shall be declared via one or more of the mechanisms defined in 2.6.4.1, and shall be
associated with steps via textual step bodies or graphical action blocks, as defined in 2.6.4.2. The
details of action block representation are defined in 2.6.4.3. Control of actions shall be expressed by
action qualifiers as defined in 2.6.4.4.

2.6.4.1 Declaration

A programmable controller implementation which supports SFC elements shall provide one or more of
the mechanisms defined in table 42 for the declaration of actions. The scope of the declaration of an
action shall be local to the program organization unit containing the declaration.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Table 42 - Declaration of actions *°

Page 89
EN 61131-3:2002

No. Feature {(\\
1 Any Boolean variable declared in a VAR or VAR OUTPUT block, or their |9¢
equivalents, can be an action.
No. Example U 'I"eature
QO
21 | | Graphical
| | declaration in LD
| | language (see 4.2)
| |
| |
! | C-=1 LT |----——-—-- (S)———+ |
| | D——| | \ |
! ! +ommmm- + \ |
e +
o +
[ OPEN VALVE 1 [
e +
| | |
2s | | * =+ I Inclusion of SFC
| || VALVE 1 READY || | elements in action
|+ =+ |
| | |
[ + STEP8.X |
| | |
| - + et +
| | VALVE_1 OPENING |--| N |VALVE 1 FWD| |
| 4= + et +
| |
e +
o +
[ ACTION 4 [
e +
| -t | Graphical
2f | | SIX1--] & | I declaration
| $MX3--| | --%Qx17 | in FBD language
| S8.X-=—m-—--- I | (see 4.3)
| +-——+ FF28 |
! toom |
| | SR | |
| to———— + | Q1|-%MX10 |
| C--1 LT |--IS1 | |
! D--| I |
! toomom + |
e +




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 90
EN 61131-3:2002

Table 42 - Declaration of actions *°

No. Feature

3s | ACTION ACTION_4: Textual declaration ‘((\\
$QX17 := $IX1 & $MX3 & S8.X ; in ST langu

FF28(S1 := (C<D)); (see%B)‘
$MX10 := FF28.0; g@
END_ACTION K.\)

-

gﬁ
3i | acTION ACTION 4: . -
\\a

LD S8.X
Textual declaration

AND $TX1 G‘\

AND $MX3 . inIL

ST 20X17 N language (see 3.2)
LD C \\

TR

LD FF28.0
ST SMX10
END ACTION

NOTE The step flag S8.X is used in these examples to obtain the desired result such
that, when s8 is deactivated, $0x17 := 0.

@ If feature 1 of table 40 is supported, then one or more of the features in this table, or
feature 4 of table 43, shall be supported.

® |f feature 2 of table 40 is supported, then one or more of features 1,3 s, or 3i of this table
shall be supported.

2.6.4.2 Association with steps

A programmable controller implementation which supports SFC elements shall provide one or more of
the mechanisms defined in table 43 for the association of actions with steps. The maximum number
of action blocks per step is an implementation-dependent parameter.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Table 43 - Step/action association

Page 91
EN 61131-3:2002

@0«\\

No. Example %
| \ n block
to———t  Am———— Fmmm +-——t a,\—k%jysically or

1 | 88 |--| L | ACTION 1 |DNI| . a‘fg logically

(\ adjacent to the
+-———+ |t#10s| step
| A B Foot (see 2.6.4.3)
+ DN1
|
| ‘\'— Concatenated
s +-—¥\+ action blocks
2 | s8 |--| L | physically or
to———+ |t#10s| | logically
| P e R adjacent to the
+DN1 | P | ACTION 2 | \ step
| +-———- o +-——+
| | N | ACTION 3 | \
| +-———- e +-——+
STEP S8:

3 ACTION 1(L,t#10s,DN1) ; Textual
ACTION 2(P) ; step body
ACTION 3(N) ;

END STEP
e o +-——1
——= N | ACTION 4 \ | -—-

e o +-——1

4° | 20X17 := $IX1 & 3MX3 & S8.X ; | Action block
| FF28 (S1 := (C<D)); [ "d" field
|  3MX10 := FF28.0Q; | (see 2.6.4.3)
e +

@ When feature 4 is used, the corresponding action name cannot be used in any other

action block.

2.6.4.3 Action blocks

As shown in table 44, an action block is a graphical element for the combination of a Boolean variable
with one of the action qualifiers specified in subclause 2.6.4.4 to produce an enabling condition,
according to the rules given in subclause 2.6.4.5, for an associated action.

The action block provides a means of optionally specifying Boolean “indicator” variables, indicated by
the “c” field in table 44, which can be set by the specified action to indicate its completion, timeout,

“w_»

error conditions, etc. If the “c

Boolean variable, then this variable shall be interpreted as the
field is not defined, and the (b) field does not specify a Boolean variable, then the value of the

“indicator” variable is considered to be always FALSE.

“ _»

field is not present, and the “b” field specifies that the action shall be a
c” variable when required. If the (c)



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 92

EN 61131-3:2002

When action blocks are concatenated graphically as illustrated in table 43, such concatenations can
have multiple indicator variables, but shall have only a single common Boolean input variable, which
shall act simultaneously upon all the concatenated blocks.

As well as being associated with a step, an action block can be used as a graphical elementg Q(_g\
or FBD languages specified in clause 4. In this case, signal or power flow throug@gg' lock

shall follow the rules specified in 4.1.1. \)g
-
Table 44 - Action block feat“a g
\a\

No. Feature \?A G\ A ‘Graphical form
1% | "a" : Qualifier as per 2.6.4. N\N
2b "b" : Action name . \ - Hmmmm - +
3 "CH . Boolean lli dl“@ . ___I "a" | Hb" ’ "c" ‘___
variables k\ Rt Fommmmm oo to——m- +
"d" : Action using: : ra :
4 | L language (3.2) e N
5 | .sT language (3.3)
6 | LD language (4.2)
7 | -FBD language (4.3)
No. Feature/Example
8 Use of action blocks in ladder diagrams (see 4.2):
| S8.X %IX7.5 +-——4-—-——- +--—+ OK1 |
+==| |====| |====| N | ACT1 |DN1|-=( )--+
| Fo— +-——1 |
9 Use of action blocks in function block diagrams (see 4.3):
+-——4 e et +-———- +
S8.X---| & |--—-- | N | ACT1 | DN1 |---OK1
$IXT7.5---] | Fom—tmm +————- +
+-——4
? Field “a” can be omitted when the qualifier is “N”.
® Field “c” can be omitted when no indicator variable is used.

2.6.4.4 Action qualifiers

Associated with each step/action association defined in 2.6.4.2, or each occurrence of an action block
as defined in 2.6.4.3, shall be an action qualifier. The value of this qualifier shall be one of the values
listed in table 45. In addition, the qualifiers 1, D, SD, DS, and SL shall have an associated duration of
type TIME.

NOTE IEC 60848 gives informal definitions and examples of the use of these qualifiers.
This standard formalizes these definitions, redefining the s qualifier and introducing
the R qualifier. The control of actions using these qualifiers is defined in the
following subclause, and additional examples of their use are given in annex F.



NOTE 1

NOTE 2

NOTE 3

NOTE 4

NOTE 5

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-3:2002

Table 45 - Action qualifiers

z
°

Qualifier Explanation

None Non-stored (null qualifier) 0((\\

N Non-stored

S.
R overriding Reset ge
D

S Set (Storeg; ,Q!‘
: e i
D QA ‘Mé Iselayed

\ N Pulse

.‘@‘\ 1 Stored and time Delayed
Delayed and Stored

gﬁ'mﬂmmhwn—x
Pt
¢
o
n

SL Stored and time Limited

-
-
avl
=

Pulse (rising edge)

-
N
g
o

Pulse (falling edge)

2.6.4.5 Action control
The control of actions shall be functionally equivalent to the application of the following rules:

1) Associated with each action shall be the functional equivalent of an instance of the
ACTION_ CONTROL function block defined in figures 14 and 15. If the action is declared as a
Boolean variable, as defined in 2.6.4.1, the Q output of this block shall be the state of this
Boolean variable. If the action is declared as a collection of statements or networks, as defined
in 2.6.4.1, then this collection shall be executed continually while the A (activation) output of the
ACTION_ CONTROL function block stands at BOOL#1. In this case, the state of the output 0
(called the "action flag") can be accessed within the action by reading a read-only boolean
variable which has the form of a reference to the Q output of a function block instance whose
instance name is the same as the corresponding action name, for example, ACTION1 . Q.

The condition Q=FALSE will ordinarily be used by an action to determine that it is being
executed for the final time during its current activation.

The value of ¢ will always be FALSE during execution of actions invoked by P0 and P1
qualifiers.

The value of A will be TRUE for only one execution of an action invoked by a P1 or PO
qualifier. For all other qualifiers, A will be true for one additional execution following the
falling edge of Q.

Access to the functional equivalent of the 0 or A outputs of an ACTION CONTROL function
block from outside of the associated action is an implementation-dependent feature.

The manufacturer may opt for a simpler implementation as shown in figure 15 b). In this
case, if the action is declared as a collection of statements or networks, as defined in 2.6.4.1,
then this collection shall be executed continually while the Q output of the ACTION CONTROL
function block stands at BOOL#1. In any case the manufacturer shall specify which of the
features given in table 45 a) is supported.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 94

EN 61131-3:2002

2) A Boolean input to the ACTION CONTROL block for an action shall be said to have an

association with a step as defined in 2.6.4.2, or with an action block as defined in 2.6.4.3, if the
corresponding qualifier is equivalent to the input name (N, R, s, 1., D, P, PO, P1, SD,
DS, or SL). The association shall be said to be active if the associated step is active, or if t \
associated action block's input has the value BOOL#1. The active associations of an a

equivalent to the set of active associations of all inputs to its ACTION CONTRO%L%UQ lock.

A Boolean input to an ACTION CONTROL block shall have the value a@% has at least one
active association, and the value BOOL#0 otherwise. @

3) The value of the T input to an ACTION CONTROL \S\be the value of the duration portion
of a time-related qualifier (L, D, SD, DS, or S c ive association. If no such association
exists, the value of the T input sha&b

4) It shall be an error in th ‘A ubclause 1.5.1 if one or more of the following conditions
exist: Q/

a) More than one &eflve association of an action has a time-related qualifier (L, D, SD, DS,
or SL).

b) The sSD input to an ACTION CONTROL block has the BOOL#1 when the Q1 output of its
SL_FF block has the value BOOL#1.

c¢) The sSL input to an ACTION CONTROL block has the value BOOL#1 when the 01 output of
its SD_FF block has the value BOOL#1.

5) It is not required that the ACTION CONTROL block itself be implemented, but only that the

control of actions be equivalent to the preceding rules. Only those portions of the action control
appropriate to a particular action need be instantiated, as illustrated in figure 16. In particular,
note that simple MOVE (: =) and Boolean OR functions suffice for control of Boolean variable
actions if the latter's associations have only “N” qualifiers.

a) b)

Fom e + fom +

| ACTION CONTROL | | ACTION CONTROL |
BOOL--- | N Q| ---BOOL BOOL---|N Q|---BOOL
BOOL---|R A|---BOOL BOOL---|R |
BOOL---15 | BOOL---|S |
BOOL---1L | BOOL---| L |
BOOL---|D | BOOL---|D |
BOOL---|P | BOOL---| P |
BOOL--- | P1 | BOOL---|P1 |
BOOL--- | PO | BOOL--- | PO |
BOOL--- | SD | BOOL---|SD |
BOOL--- | DS | BOOL--- | DS |
BOOL--- | SL | BOOL---| SL |
TIME---|T | TIME---|T |

Fom e + Fom +

IEC 2485/02

Figure 14 - ACTION_CONTROL function block - External interface (Not visible to the user)
a) With “final scan” logic - see figure 15 a); b) Without “final scan” logic - see figure 15 b)



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 95

EN 61131-3:2002

+o——t
- ol & |---0
| o + |
L [ >=1 |-~ |
| S FF | | +———+
R-—+ +-———t | \ 6 .
| | RS | | | NQT 9)6
S== | mmm [S QL |=======—=————— | \ KS: f this
o IR | | - nction block
| e T et K (\ | *are not visible
T Fmm e I X—\\| \ to the user
| | L_TMR +=-0 | . | \
| | fom——— + | + | \ NOTE 2
| | | TON |, \\ | \ The external
| o | 3 D_TMR | \ interface of this
| +————————————V‘“@ oo + | | function block type
N + | TON | | \ is given in figure
D e [IN  Ql-===-= | \ 14 a)
| A= | PT \ | \
[ P TRIG Fo——— - + | \
[ o + | \
[ | R_TRIG | | \
e R D ICLK Ql=m=mmmmmm e | \
[ SD FF  +4-——————- +  SD_TMR |
N +--m- + | \
[ | RS | | TON | | \
SD=|==[===18 Ql|-=========—==—— [IN  Q-=======—~ | \
t==|--=IR1 | s | PT | | \
[ +o———t | DS _TMR  +----- + DS FF |
I + - + +-———t | \
(I | TON | | RS | |
DS—|-=|========—mmm [IN  Q========—~ S QlI---I|
| A= IPT | t--—IR1 | | \
Lo +o-- + e \
Sl e + | \
[ SL FF | \
[ to———t | \
[ | RS | to——t
SL-|==[======== IS Qlf==t=—mmmmmm oo I & [-=1
Rl e IR1 | | SL_TMR +--0] [ +
| s e + | +o——t
| | | TON | |
| +=—==|IN Q|---+ o — +
T-—--- o | PT \ o + | >=1 |
tmmm e + | F _TRIG | Q——-| |---A
tommm e + Q---|CLK Ql=======—= | \
| R_TRIG | tommm - + | \
Pl-—-——————————— | CLK Qf mm | \
oo + Fommm - + | \
| F TRIG | | \
PO-————— oo | CLK Ql-——————mmmm oo | \
Fommm - + - +

GO\:(\\

Figure 15 a) - ACTION_CONTROL function block body with “final scan” logic

IEC 2486/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 96
EN 61131-3:2002

+o——t
- ol & |---0
| o + |
L [ >=1 |-~ |
| S FF | | +———+
R-—+ +-———t | \ 6 .
| | RS | | | NQT g@
S== | [S QL |-=====——=————— | \ k; f this
o IR | | - nction block
| e T et K (\ | *are not visible
T Fm e I X—\\| \ to the user
| | L_TMR +=-0 | . | \
| | et + + | \ NOTE 2 -
| | | TON |, \\ | \ The external
| o | =3 D_TMR | \ interface of this
| A “@ Fm——— + | \ function block type
N + | TON | | \ is given in figure
D e [IN  Ql-===-= | \ 14 b)
s | PT \ | \
(. P TRIG Fo——— - + | \
[ o + | \
[ | R_TRIG | | \
e R ICLK Ql=m=mmmmm e | \
[ SD FF  +-——————- +  SD_TMR |
N Mt + | |
[ | RS | | TON | | \
SD=|==[===18 Ql[-=========—==——= [IN  Q-=======—~ | \
t==|--=IR1 | s | PT | | \
[ +o———t | DS _TMR  +----- + DS FF |
[ 4———mmmm - + - + +-———t | \
[ | TON | | RS | |
DS—|-=|=========mmm [IN  Q========—~ S QlI---1|
[ IPT | t--—IR1 | | \
Lo - + N |
Sl e + | \
(. SL FF | \
[ to———t | \
[ | RS | to——t
SL-|==[======== IS Qlf==t==mmmmmm oo I & [-=1
== [RL | | SL_ TMR +--0]| | | \
| s e + | -+ |
| | | TON | | | \
| t====|IN Q--~+ | \
T-—--- o | PT \ | \
Fommm - + o + | \
| R_TRIG | | \
Pl---——-—- | CLK Qf=m—m oo | |
Fommm - + to—mmmm - + | \
| F_TRIG | | \
PO-———————m—m o | CLK Ql-——————— - | |
to—mmmm - + +————- +

IEC 2487/02

Figure 15 b) - ACTION_CONTROL function block body without “final scan” logic



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 97

EN 61131-3:2002

START INDICATOR |

| t———t————— + 66
+ HV_BRKR CLOSED g

' A\

R + B e + ,g
| 823 |---| SL | RUNUP_MONITOR | ‘\‘\a‘
e + [t#1lm]| | (;‘\

|
| | D | START W
| |t#ls| . ‘
| ot ¥ +
+ START_WA“\XQ
|
R T — o e +
| S24 |---| N | ADVANCE STARTER | STARTER ADVANCED |
R T —— o o +
| T | START MONITOR \
[ t#30s| \
FRE— ey +

|
|
|
+ STARTER ADVANCED
|

to——— T Fmmm +
| S27 |---] R | START INDICATOR |
to——— I Fmmm +
| | R | RUNUP_MONITOR |
| o Fmmm +

IEC 2488/02

NOTE The complete SFC network and its associated declarations are not shown in this example.

Figure 16 a) - Action control example - SFC representation

Table 45 a) - Action control features

No. Description
1 per figures 14 a) and 15 a)
2 per figures 14 b) and 15 b)




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 98
EN 61131-3:2002

B it HV_ BREAKER
S24 X mmmmm ADVANCE STARTER
§26 . X mm RETRACT STARTER

§22 . Xmmmmmmmmmmmmmm oo [ § Q1 | mmmmmmmmmm e STARTQ&X}OR
S27  X-=mmmm e . “a’

S23 . X—————meeeee ¥ N O START WAIT

RUNUP_MONITOR SL FF

-
| RS | +-——t
S23.X-==]S Ql|==#———mmmmmmmmmmmmmm o | & |--RUNUP MONITOR
S27.X---|R1l | | RUNUP MONITOR SL TMR +--O| |
e - + \ +———+t
| | TON |
fom [TN  Qf-----———- +
thlm-————mmmm o —mmmm oo |PT |
- +
-t
S24 . X-————=-==--= o | & |---START MONITOR
| START MONITOR L TMR +---0O| |
| tm———- + | -t
| | TON | |
fom e [IN Q|----——- +
t#308-——————mm—————mmmm oo |PT |
- +

Figure 16 b) - Action control example - functional equivalent

2.6.5 Rules of evolution

IEC 2489/02

The initial situation of a SFC network is characterized by the initial step which is in the active state

upon initialization of the program or function block containing the network.

Evolutions of the active states of steps shall take place along the directed links when caused by the

clearing of one or more fransitions.

A transition is enabled when all the preceding steps, connected to the corresponding transition symbol
by directed links, are active. The clearing of a transition occurs when the transition is enabled and

when the associated transition condition is true.

The clearing of a transition causes the deactivation (or "resetting") of all the immediately preceding
steps connected to the corresponding transition symbol by directed links, followed by the activation of

all the immediately following steps.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 99
EN 61131-3:2002

The alternation step/transition and transition/step shall always be maintained in SFC element
connections, that is:

- Two steps shall never be directly linked; they shall always be separated by a transition. ((\\

- Two transitions shall never be directly linked; they shall always be separated by a step

When the clearing of a transition leads to the activation of several steps at t t|me the
sequences to which these steps belong are called simultaneous sequences. r simultaneous
activation, the evolution of each of these sequences becomes independ to emphasize the
special nature of such constructs, the divergence and convergen gu taneous sequences shall
be indicated by a double horizontal line.

It shall be an error if the possibility can arise that n X}ed transitions in a selection divergence,
as shown in feature 2a of table 46, are S|m y true The user may make provisions to avoid

this error as shown in features 2b and
Table 46 defines the syntax an s of the allowed combinations of steps and transitions.

The clearing time of a transi¥ may theoret|cally be considered as short as one may wish, but it can
never be zero. In practice, the clearing time will be imposed by the programmable controller
implementation. For the same reason, the duration of a step activity can never be considered to be
zero.

Several transitions which can be cleared simultaneously shall be cleared simultaneously, within the
timing constraints of the particular programmable controller implementation and the priority constraints
defined in table 46.

Testing of the successor transition condition(s) of an active step shall not be performed until the
effects of the step activation have propagated throughout the program organization unit in which the
step is declared.

Figure 17 illustrates the application of these rules. In this figure, the active state of a step is indicated
by the presence of an asterisk (*) in the corresponding block. This notation is used for illustration only,
and is not a required language feature.

The application of the rules given in this subclause cannot prevent the formulation of “unsafe” SFCs,
such as the one shown in figure 18 a), which may exhibit uncontrolled proliferation of tokens.
Likewise, the application of these rules cannot prevent the formulation of “unreachable” SFCs, such as
the one shown in figure 18 b), which may exhibit “locked up” behavior. The programmable controller
system shall treat the existence of such conditions as errors as defined in 1.5.1.

The maximum allowed widths of the “divergence” and “convergence” constructs in table 46 are
implementation-dependent parameters.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 100
EN 61131-3:2002

Table 46 - Sequence evolution

No.

Example

Rule

\\““\N

\
@@‘?QQ

&st sS3 to step S4 shall take
plam Iy if step s3 is in the active state
nd the transition condition c is true.

Single sequenc
The alternation step- tra
sep

An ey, Iu

2a | |

Divergence of sequence selection:

A selection between several sequences is
represented by as many transition symbols, under
the horizontal line, as there are different possible

evolutions. The asterisk denotes left-to-right
priority of transition evaluations.

Example:

An evolution shall take place from S5 to s6 only if
S5 is active and the transition condition e is true,
or from S5 to S8 only if S5 is active and £ is true

and e is false.

2b |

Divergence of sequence selection:

The asterisk, followed by numbered branches,
indicates a user-defined priority of transition
evaluation, with the lowest-numbered branch

having the highest priority.
Example:
An evolution shall take place from S5 to S8 only if
S5 is active and the transition condition £ is true,
or from S5 to s6 only if S5 is active, and e is true,
and f£ is false.

2c [

to———t
| S8 |
Fo———t

+NOT e & £

Divergence of sequence selection:
The connection of the branch indicates that the
user must assure that transition conditions are
mutually exclusive, as specified by IEC 60848.

Example:
An evolution shall take place from S5 to s6 only if
S5 is active and the transition condition e is true,
or from S5 to s8 only if S5 is active and e is false
and f£ is true.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 101

EN 61131-3:2002

Table 46 - Sequence evolution

No.

Example

Rule

Convergence of sequence selection: ((‘,\\

The end of a sequence selectlon
represented by as many tr. r%
symbols, above the honzont@ there are

selection pataI ded.

|o shall take place
m 10 only if S7 is active and the
ion condition h is true, or from s9 to s10

only if s9 is active and 7 is true.

Simultaneous sequences - divergence:
Only one common transition symbol shall be
possible, above the double horizontal line of

synchronization.

Example:

An evolution shall take place from S11 to S12,
S14,... only if S11 is active and the transition
condition “b” associated to the common transition
is true. After the simultaneous activation of S12,
S14, etc., the evolution of each sequence
proceeds independently.

Simultaneous sequences - convergence:

Only one common transition symbol shall be

possible, under the double horizontal line of
synchronization.

Example:

An evolution shall take place from S13, S15,... to
S16 only if all steps above and connected to the
double horizontal line are active and the transition
condition “d” associated to the common transition
is true.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 102

EN 61131-3:2002

Table 46 - Sequence evolution

No.

Example

Rule

ba
5b
5c

\\\\9“

e

Sequence skip:
A “sequence skip” is a special cas
sequence selection (featur
more of the branches contai

e 2) in wilich\e#e or
. features
representation

5a, 5b, and 5c corresp i

options given ir@g
afe ctively.

Example:
G (feature 5a shown)
Nn'evolution shall take place from S30 to S33 if
\ “a” is false and “d” is true, that is, the sequence
\ (831, S32) will be skipped.

ot

2a, 2b, and 2c,

6a
6b
6¢Cc

Sequence loop:
A “sequence loop” is a special case of sequence
selection (feature 2) in which one or more of the
branches returns to a preceding step. Features
6a, 6b, and 6¢ correspond to the representation
options given in features 2a, 2b, and 2c,
respectively.

Example:
(feature 6a shown)
An evolution shall take place from S32 to S31 if
c” is false and “d” is true, that is, the sequence
(S31, S32) will be repeated.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Table 46 - Sequence evolution

Page 103
EN 61131-3:2002

No. Example Rule
7 | Directional arrows: &( \
fom o n When necessary for clarity, the “less th Q
| S30 | character of the character set defi can
fo n be used to indicate right-to- row and
| the “greater than” (>) ¢ represent left-
+ a to-right control ro this feature is used,
| the corre racter shall be located
& “ ” characters that is, in the
| | & ré) sequence ‘-<-" or “->-" as shown in the
e " | accompanying example.
| 831 | o, \\NN
+-——— + .
R\
+ b |
| l
+-———- + |
| 832 | l
+-——— + |
| l
kS + ’
| | l
+ c + d |
| | l
+-—— + 4>+
| $33 |
F——— +




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 104
EN 61131-3:2002

a) Transition not
enabled
(X =0o0r1)

b) Transition enabled
but not cleared
(X=0)

c) Transition
cleared
X=1)

NOTE

| | | .

ISTEPllI |

\\N ______

* \

+-——— + A +
| |
| | | \
+-——— + +-— + + 4 +
| STEP1O| | STEP9 | | STEP13| | STEP22 |
[ * | [ * [ = | | * |
+-——— + +-— + - + 4 +
| | | \
+ X ===+ + +
| |
+-—— + + X
|STEP11 | |
| | ====+ + +
+ommme + | |
| +-—— + A +
| STEP15| | STEP16 |
| | | \
+-——— + A +
| |
\ | | |
- + +-—— + + +
| STEP10 | |STEPS| |STEP13| |STEP22]
\ \ | [ [ |
- + +-—— + + +
\ | | |
+ X + + +
\ |
+————— + + X
| STEP11| |
‘ * ‘ B NNt T TN e
- + | |
| Fm———— + A +
|STEP15| |STEP16]
| [ B |
+-—— + 4 +

IEC 2490/02

In this figure, the active state of a step is indicated by the presence of an asterisk (*) in

the corresponding block. This notation is used for illustration only, and is not a required
language feature.

Figure 17 - Examples of SFC evolution rules



Page 105

EN 61131-3:2002

IEC 2491/02

t5
t7

|

+ t3

|
+———+

E
+———+

|

|

|

+

|
+———+

G
+———+

|

+

|

e
t2

I

+

I
+-——t

D
+-——t

I

+

|
t=====+
A 1]

Figure 18 a) - Examples of SFC errors: an “unsafe” SFC
(see 2.6.5)

f=====1
|
+ tl
|
fm=m=m=========
+
|
+ t4
|
+-——+
[ F
==+
|
+ t6
|
e

T it

1S9 (9) ‘AdoD pajjonuodun ‘2002 00:00+LIND S¥:¥S:€0 02 unt pa ‘ABojouyoa] jo sxnnsu| ‘ybejre ABojouydsa ] JO amnsu| :AdoD pasuaoi



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-3:2002

B +
|
t=====+
[T A |]
t=====+
|
+ tl
|
+= +

|

|

|

|

|

|

|

|

|

| F———— + G

| | B | . c |

| +———— + +———— +

| | ‘\\ |

| W‘ Koo +

| \(\'\ | |

| | + t2 + t3
| | | |

| | +———+ +———+
| | | D | | E |
| | +———+ +———+
| | | |

| ===4= + F=== |

| | |

| + t4 + t5
| | |

| +———+ +———+
| | F | | G |
| +———+ +———+
| | |

| + + F===
| |

| + to

|

IEC 2492/02

Figure 18 b) - Examples of SFC errors: an “unreachable” SFC

(see 2.6.5)

2.6.6 Compatibility of SFC elements

SFCs can be represented graphically or textually, utilizing the elements defined above. Table 47
summarizes for convenience those elements which are mutually compatible for graphical and textual

representation, respectively.



Page 107
EN 61131-3:2002

Table 47 - Compatible SFC features

Table Graphical representation Textual representation

40 1, 3a, 3b, 4 2, 3a, 4 AOl((\
41 1,2,3,4,4a,4b,7,7a, 7b 5,6, 7c, 7d A\
42 1,21, 2s, 2f ,\3&\“’( ;,e

43 1,2, 4 O3
44 1109 (\a’g
o —
45 1t0 10 G\<\‘\1t10ttl ivalent
(o} ‘\‘\l . o 10 (textual equivalent)
46 1{al N 1106

57 \{e&‘ A N

2.6.7 SFC Compliance requirements

In order to claim compliance with the requirements of 2.6, the elements shown in table 48 shall be
supported and the compatibility requirements defined in 2.6.6 shall be observed.

Table 48 - SFC minimal compliance requirements

Table Graphical representation Textual representation
40 1 2
41 1or2or3or (4 and (4a or 4b)) 50r6
or (7 and (7a or 7b or 7c or 7d))
42 1 or 2l or 2f 1 or 3s or 3i
43 1or2or4 3
45 1or2 1or2
46 1 and (2a or 2b or 2c) and 3 and 4 Same (textual equivalent)
57 (1 or2)and (3 or4)and (5 or 6) and Not required
(7 or8)and (9 or 10) and (11 or 12)

2.7 Configuration elements

As described in 1.4.1, a configuration consists of resources, tasks (which are defined within
resources), global variables, access paths and instance specific initializations. Each of these
elements is defined in detail in this subclause.

A graphic example of a simple configuration is shown in figure 19 a). Skeleton declarations for the
corresponding function blocks and programs are given in figure 19 b). This figure serves as a
reference point for the examples of configuration elements given in the remainder of this subclause
such as in figure 20.

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 108
EN 61131-3:2002

CONFIGURATION CELL_1
RESOURCE STATION_2

RESOURCE STATION_1

SLOW_1 FAST_1 PER_2 INT_2 (
TASK TASK TASK TASK G
aeb:
P1 P2 P1 ﬂ,\)
-
- H
1 C " B1 FB2
A
I @ out1 % c Er—
> B
SLOW_1 EB &
—[COUNT (|, PER 2
\ HOUTTH
SLOW_1 ( \Y FAST 1 PER 2 T 2

g

] =]

%QB25|[ [/QW5

GLOBAL AND DIRECTLY [REPRESENTED VARIABLES
AND INSTANCE-SPECIFIC INITIALIZATIONS
v v L 2 k. 4
BAKER] [S1_COUNT| [ABLE] [CHARLIE] DOG |€XMMA| [ALPHA| ETA BETA

ACCESS PATHS

Communication function

(See IEC 1131-5)

Figure 19 a) - Graphical example of a configuration

IEC 2493/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 109
EN 61131-3:2002

FUNCTION BLOCK A
VAR OUTPUT

END VAR
END FUNCTION BLOCK

yl : UINT ; y2 : BYTE

FUNCTION BLOCK B \

VAR INPUT

bl : UINT ; b2 : BYTE 5 CJ
A 3

END VAR

FUNCTION BLOCK C

VAR C2 AT %Q*: BYTE;
C3: INT;
END VAR
END FUNCTION BLOCK

VAR OUTPUT cl : BOOL

‘%_FUNCT ION_BLOCK

ENDFUNCTIONBLO@\)Q
"y
FUNCTION pRQ&
‘\I al”: BOOL ; END VAR
\bureuT y2 @ INT ; END VAR

VAR OUTPUT yl
VAR COUNT: INT;
END PROGRAM

PROGRAM F XX\\\'Q "u

VAR INPUT :* BOOL END VAR

TON; END VAR

PROGRAM G
VAR OUTPUT outl
VAR EXTERNAL zl
VAR FB1 : A ;
FB1(...); outl

END PROGRAM

FBl.y2;
FB2 (bl := FBl.yl,

PROGRAM H

VAR FB1 : C ;

FB1(...) ;

FB2(...); HOUT1
END PROGRAM

VAR OUTPUT HOUTI1:

IEC 2494/02

Figure 19 b) - Skeleton function block and program declarations for configuration example

2.7.1 Configurations, resources, and access paths

Table 49 enumerates the language features for declaration of configurations, resources, global
variables, access paths and instance specific initializations. Partial enumeration of TASK declaration
features is also given; additional information on tasks is provided in 2.7.2. The formal syntax for these
features is given in B.1.7. Figure 20 provides examples of these features, corresponding to the
example configuration shown in figure 19 a) and the supporting declarations in figure 19 b).

The ON qualifier in the RESOURCE. . .ON. . .END RESOURCE construction is used to specify the type of
“processing function” and its “man-machine interface” and “sensor and actuator interface” functions
upon which the resource and its associated programs and tasks are to be implemented. The
manufacturer shall supply an implementation-dependent resource library of such functions, as
illustrated in figure 3. Associated with each element in this library shall be an identifier (the resource

type name) for use in resource declaration.

NOTE The RESOURCE. ..ON...END RESOURCE construction is not required in a configuration
with a single resource. See the production single resource declaration in B.1.7

for the syntax to be used in this case.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 110

EN 61131-3:2002

The scope of a VAR _GLOBAL declaration shall be limited to the configuration or resource in which it is
declared, with the exception that an access path can be declared to a global variable in a resource
using feature 10d in table 49.

The VAR ACCESS...END VAR construction provides a means of specifying variable nan@‘cﬁ\ \
can be used for remote access by some of the communication services specified in | 1184-5. An
access path associates each such variable name with a global variable, a direct, ted variable
as defined in 2.4.1.1, or any input, output, or internal variable of a prograg block.

The association shall be accomplished by qualifying the % ariable with the complete
hierarchical concatenation of instance names, beginni n% the name of the resource (if any),
followed by the name of the program instance (if a . ed by the name(s) of the function block
instance(s) (if any). The name of the variable 4 enated at the end of the chain. All names in the
concatenation shall be separated by d h a variable is a multi-element variable (structure or
array), an access path can also 'e‘ fled to an element of the variable.

It shall not be possible mTine access paths to variables that are declared in VAR TEMP,
VAR EXTERNAL or VAR IN OUT declarations.

The direction of the access path can be specified as READ WRITE or READ ONLY, indicating that the
communication services can both read and modify the value of the variable in the first case, or read
but not modify the value in the second case. If no direction is specified, the default direction is
READ ONLY.

Access to variables that are declared CONSTANT or to function block inputs that are externally
connected to other variables shall be READ ONLY.

NOTE The effect of using READ WRITE access to function block output variables is
implementation-dependent.

The VAR CONFIG...END_ VAR construction provides a means to assign instance specific locations to
symbolically represented variables, which are nominated for the respective purpose by using the
asterisk notation described in 2.4.1.1 and 2.4.3.1, respectively, or to assign instance specific initial
values to symbolically represented variables, or both.

The assignment shall be accomplished by qualifying the name of the object to be located or initialized
with the complete hierarchical concatenation of instance names, beginning with the name of the
resource (if any), followed by the name of the program instance, followed by the name(s) of the
function block instance(s) (if any). The name of the object to be located or initialized is concatenated
at the end of the chain. All names in the concatenation shall be separated by dots. The location
assignment or the initial value assignment follows the syntax and the semantics described in 2.4.3.1
and 2.4.3.2 respectively.

Instance specific initial values provided by the VAR CONFIG...END VAR construction always
override type specific initial values. It shall not be possible to define instance specific initializations to
variables which are declared in VAR TEMP, VAR EXTERNAL, VAR CONSTANT or VAR IN OUT
declarations.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Table 49 - Configuration and resource declaration features

Page 111

EN 61131-3:2002

No. Description

CONFIGURATION. ..END CONFIGURATION construction .
VAR GLOBAL...END VAR construction within CONFIGURATI@\
— — P

C

N

: AV~
RESOURCE. . .ON...END RESOURCE construction O'
p ‘
VAR_GLOBAL. . .END_ VAR construction wi@iA' E

- . \
5a | Periodic TASK construction (see note“ \) G\

5b | Non-periodic TASK constrluctiq\Nu%te 1)

6a |wWITH construction fp{m\c\c M to TASK association (see note 1)

6b |wITH constrve\l\WF’u'nction Block to TASK association (see note 1)

A
6c | PROGRAM deéaration with no TASK association (see note 1)

7 Declaration of directly represented variables in VAR GLOBAL (see note 2)

8a | Connection of directly represented variables to PROGRAM inputs

8b | Connection of GLOBAL variables to PROGRAM inputs

9a | Connection of PROGRAM outputs to directly represented variables

9b | Connection of PROGRAM outputs to GLOBAL variables

10a |VAR ACCESS...END VAR construction

10b | Access paths to directly represented variables

10c | Access paths to PROGRAM inputs

10d | Access paths to GLOBAL variables in RESOURCESs

10e | Access paths to GLOBAL variables in CONFIGURATIONSs

10f | Access paths to PROGRAM outputs

10g | Access paths to PROGRAM internal variables

10h | Access paths to function block inputs

10i | Access paths to function block outputs

11 | VAR _CONFIG...END VAR construction®

12a | VAR GLOBAL CONSTANT in RESOURCE declarations

12b | VAR GLOBAL CONSTANT in CONFIGURATION declarations

13a | VAR EXTERNAL in RESOURCE declarations

13b | VAR EXTERNAL CONSTANT in RESOURCE declarations

NOTE 1 See 2.7.2 for further descriptions of TASK features.
NOTE 2 See 2.4.3.1 for further descriptions of related features.

@ This feature shall be supported if feature 10 in table 15 is supported.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 112
EN 61131-3:2002

Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features

No. Example

1 CONFIGURATION CELL_1 66 \J
2 VAR GLOBAL W U NT; END VAR \)g
3 RESOURCE STATION 1 ON PROCESSOR TYPE 1 ,ga'
4 VAR GLOBAL z1: BYTE; END VAR (\a

5a TASK SLOW 1 (INTERVAL := t sgMRIORITY := 2) ;
5a TASK FAST 1 (INTE ¥10ms, PRIORITY := 1) ;
6a PROGRAM P&{? ‘SL B

8a 1= 2IX1.1) ;

9b PROGRAM P2 : G(OUT1 => w,

6b FB1 WITH SLOW 1,

6b FB2 WITH FAST 1) ;

3 END_RESOURCE

3 RESOURCE STATION 2 ON PROCESSOR TYPE 2

4 VAR _GLOBAL 22 BOOL ;

7 AT %QW5 : INT ;

4 END VAR

5a TASK PER 2 (INTERVAL := t#50ms, PRIORITY := 2) ;
5b TASK INT 2 (SINGLE := z2, PRIORITY := 1) ;
6a PROGRAM P1 WITH PER 2

8b F(x1l := 22, x2 := w) ;

6a PROGRAM P4 WITH INT 2

9a H(HOUT1 => %QW5,

6b FB1 WITH PER 2);

3 END_RESOURCE

10a VAR _ACCESS
10b ABLE STATION 1.%IX1.1 BOOL READ ONLY ;
10c BAKER STATION 1.P1.x2 UINT READ WRITE ;
10d CHARLIE : STATION 1.zl BYTE ;
10e DOG D ow UINT READ ONLY ;
10f ALPHA STATION 2.P1.yl BYTE READ ONLY ;
10f BETA STATION 2.P4.HOUT1 INT READ ONLY  ;
10d GAMMA STATION 2.z2 BOOL READ WRITE ;
10g S1_COUNT : STATION 1.P1.COUNT : INT;
10h THETA : STATION 2.P4.FB2.dl : BOOL READ WRITE;
10i ZETA : STATION 2.P4.FBl.cl : BOOL READ ONLY;

10k OMEGA : STATION 2.P4.FB1.C3 : INT READ WRITE;




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-

Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features

beyond the % i% part of IEC 61131.

NOTE 2 ltis an error X the data type declared for a variable in a VAR_ACCESS
statement is not the same as the data type declared for the variable elsewhere,
e.g., if variable BAKER is declared of type WORD in the above examples.

IEC 2495/02

2.7.2 Tasks

For the purposes of this part of IEC 61131, a task is defined as an execution control element which is
capable of invoking, either on a periodic basis or upon the occurrence of the rising edge of a specified
Boolean variable, the execution of a set of program organization units, which can include programs
and function blocks whose instances are specified in the declaration of programs.

The maximum number of tasks per resource and task interval resolution are implementation-
dependent parameters.

Tasks and their association with program organization units can be represented graphically or
textually using the WITH construction, as shown in table 50, as part of resources within configurations.
A task is implicitly enabled or disabled by its associated resource according to the mechanisms
defined in 1.4.1. The control of program organization units by enabled tasks shall conform to the
following rules:

1) The associated program organization units shall be scheduled for execution upon each rising edge
of the SINGLE input of the task.

2) If the INTERVAL input is non-zero, the associated program organization units shall be scheduled
for execution periodically at the specified interval as long as the SINGLE input stands at zero (0). If
the INTERVAL input is zero (the default value), no periodic scheduling of the associated program
organization units shall occur.

3) The PRIORITY input of a task establishes the scheduling priority of the associated program
organization units, with zero (0) being highest priority and successively lower priorities having
successively higher numeric values. As shown in table 50, the priority of a program organization
unit (that is, the priority of its associated task) can be used for preemptive or non-preemptive
scheduling.

No. Example

10a END VAR 0'((\\

11 VAR _CONFIG CJ
STATION 1.P1.COUNT : INT := 1; 66'
STATION 2.P1.COUNT : INT := 100; \)g
STATION 1.P1.TIMEl : TON := (PT := T#2.5s);ga'
STATION 2.P1.TIMEl : TON := (PT := g4 7
STATION 2.P4.FB1.C2 AT %QB25 : B \

END_VAR ol G
1 END_CONFIGURATION v
NOTE 1 Graphical and semi i‘}épresentation of these features is allowed but is

Page 113
3:2002



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 114

EN 61131-3:2002

4)

a) In non-preemptive scheduling, processing power becomes available on a resource when
execution of a program organization unit or operating system function is complete. When
processing power is available, the program organization unit with highest scheduled prlorlty
shall begin execution. If more than one program organization unit is waiting at the
scheduled priority, then the program organization unit with the longest wa|t|ng ti é
highest scheduled priority shall be executed.

b) In preemptive scheduling, when a program organization unit is schedyl @n interrupt the
execution of a program organization unit of lower priority on th urce, that is, the
execution of the lower-priority unit can be suspended until ution of the higher-priority
unit is completed. A program organization unit shaw pt the execution of another unit

of the same or higher priority.

NOTE Depending on schedule priorifi
execution at the instar&'

ogram organization unit might not begin
duled. However, in the examples shown in
table 50, all pr anization units meet their deadlines, that is, they all
complete e 0& klore being scheduled for re-execution. The manufacturer
shall provid ormatlon to enable the user to determine whether all deadlines
will be metin a proposed configuration.

A program with no task association shall have the lowest system priority. Any such program shall
be scheduled for execution upon “starting” of its resource, as defined in 1.4.1, and shall be re-
scheduled for execution as soon as its execution terminates.

When a function block instance is associated with a task, its execution shall be under the exclusive
control of the task, independent of the rules of evaluation of the program organization unit in which
the task-associated function block instance is declared.

Execution of a function block instance which is not directly associated with a task shall follow the
normal rules for the order of evaluation of language elements for the program organization unit
(which can itself be under the control of a task) in which the function block instance is declared.

The execution of function blocks within a program shall be synchronized to ensure that data
concurrency is achieved according to the following rules:

a) If a function block receives more than one input from another function block, then when the
former is executed, all inputs from the latter shall represent the results of the same evaluation.
For instance, in the example represented by figure 21 a), when Y2 is evaluated, the inputs Y2. A
and Y2.B shall represent the outputs Y1.C and Y1.D from the same (not two different)
evaluations of Y1.

b) If two or more function blocks receive inputs from the same function block, and if the
“destination” blocks are all explicitly or implicitly associated with the same task, then the inputs
to all such “destination” blocks at the time of their evaluation shall represent the results of the
same evaluation of the “source” block. For instance, in the example represented by figures 21
b) and 21 ¢), when Y2 and Y3 are evaluated in the normal course of evaluating program P1, the
inputs Y2.A and Y2 .B shall be the results of the same evaluation of Y1 as the inputs Y3.A and
Y3.B.

Provision shall be made for storage of the outputs of functions or function blocks which have explicit
task associations, or which are used as inputs to program organization units which have explicit task
associations, as necessary to satisfy the rules given above.

It shall be an error in the sense of subclause 1.5.1 if a task fails to be scheduled or to meet its
execution deadline because of excessive resource requirements or other task scheduling conflicts.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 115

EN 61131-3:2002

Table 50 - Task features

((\\

No. Description/Examples %
1a Textual declaration of periodic TASK (feature 5a of tat‘e\@
1b

Textual declaration of non-periodic TASK (fea}gre able 49)

Graphical representation of TA%\M form)

-
TASKNAME ‘\J
fomm - +

| TASK . \\

|
BOOL--- | SINGLE | \9‘
TIME--- | INTERVAL |\\\,

|

UINT---|PRIORITY
Fo +
2a Graphical representation of periodic TASKs
SLOW 1 FAST 1
Fo——— + Fo—— +
| TASK | | TASK
| SINGLE | | SINGLE \
t#20ms—---| INTERVAL | t#10ms---| INTERVAL |
2-—-|PRIORITY | 1---|PRIORITY |
Fo——— + Fo—— +
2b Graphical representation of non-periodic TASK
INT 2
Fo— +
| TASK |
$IX2---| SINGLE |
| INTERVAL |
1---|PRIORITY |
Fo— +
3a Textual association with PROGRAMs (feature 6a of table 49)

3b

Textual association with function blocks (feature 6b of table 49)

4a

Graphical association with PROGRAMs

RESOURCE STATION 2

Pl P4
Fomm + R +
| F | I H |
| | I |
| | I |
Fo—m + Fomm +
| PER 2 | | INT 2 |
Fomm + Fomm +

END RESOURCE




Page 116

EN 61131-3:2002

Table 50 - Task features

No.

4b

Description/Examples Cyk(\\
Graphical association with function blocks within PROGRAMSs CJ

RESOURCE STATION 1

| |
| |
| FB1 BB |
| +————— + ¢, ANV FH————— + |
| | A 4 \\ | B | |
| | ‘\\Q| . | \ |
| \N | | | |
| +————— + F————— + |
| | SLowW 1| |FAST 1| |
| o + fomm + |
B et +

END RESOURCE

N

Sa

Non-preemptive scheduling

EXAMPLE 1:

- RESOURCE STATION 1 as configured in figure 20
- Execution times: P1 =2 ms; P2 =8 ms;

- P2.FB1 = P2.FB2 = 2 ms (see note 3)

- STATION 1 startsatt=0

SCHEDULE (repeats every 40 ms)

t(ms) Executing Waiting
n D7 FROA1 D1AY D7 WTRI1MAD D7

2 P1@2 P2.FB1@2, P2

4 P2.FB1@2 P2

6 P2

10 P2 P2.FB2Q1

14 P2.FB2@1 P2

16 P2 (P2 restarts)

20 P2 P2.FB2@1, P1@2, P2.FB1@2
24 P2.FB2GR1 P1Q@2, P2.FB1Q@2, P2

26 P1@2 P2.FB1@2, P2

28 P2.FB1@2 P2

30 P2.FB2@1 P2

32 P2

40 P2.FB2@1 P1@2, P2.FB1@2, P2

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 117

EN 61131-3:2002

Table 50 - Task features

No. Description/Examples
5a Non-preemptive scheduling ~
EXAMPLE 2: g@v ’
- RESOURCE STATION 2 as configured in figure 20
- Executipn t.imes: P1=30ms, P4 =5ms, P4.FB1 =10 ms,@me 4)
ozl voged a0 80w\ (N
— SRDOTE
t(ms) Executirlg‘ \\‘N\‘ Waiting
0 P1@2 h‘\\\) B P4.FB1@2
25 pl@2 N P4.FB1@2, P4e@l
30 P4@1 P4.FB1@2
35 P4.FB1@2
50 P4@1 P1@2, P4.FBl@2
55 P1@2 P4.FB1@2
85 P4.FB1@2
90 P4.FB1@2 p4@l
95 p4@l
100 | pi1e2 P4.FB1@2
5b Preemptive scheduling
EXAMPLE 3:

- RESOURCE STATION 1 as configured in figure 20
- Execution times: P1 =2 ms; P2 =8 ms; P2.FB1 = P2.FB2 = 2 ms ( see note 3)
- STATION 1 startsatt=0

SCHEDULE

t(ms) Executing Waiting
0 P2.FB2@1 P1@2, P2.FB1l@2, P2

2 P1@2 P2.FB1@2, P2

4 P2.FB1@2 P2

6 P2

10 P2.FB2Q1 P2

12 P2

16 P2 (P2 restarts)

20 P2.FB2@1 P1@2, P2.FB1@2, P2




Page 118

EN 61131-3:2002

Table 50 - Task features

No.

Description/Examples

5b

Preemptive scheduling

e

EXAMPLE 4: 6—3 ’
- RESOURCE STATION 2 as configured in figure 20 Qaj\)

- Execution times: P1 =30 ms, P4 =5 ms, P4 FB1 =10 ms
- INT_ 2 is triggered at t = 25, 50, 90, .

- STATION 2 starts att=0 \(\\(\

N\
t(ms) Executing‘ \\N“ Waiting
0 P1@2 \\‘\\G P4.FB1@2
25 P4Q1 P1@2, P4.FB1@2

30 Pl@2 P4.FB1@2

35 P4.FB1@2

50 P4@1 P1@2, P4.FB1@2

55 P1@2 P4.FB1@2

85 P4.FB1@2

a0 P4@1 P4.FB1@2

95 P4.FB1@2

100 | p1e2 P4.FB1@2

NOTE 1 Details of RESOURCE and PROGRAM declarations are not shown; see 2.7 and

2.71.

NOTE 2 The notation X@Y indicates that program organization unit X is scheduled or

executing at priority Y.

NOTE 3 The execution times of P2.FB1 and P2 .FB2 are not included in the execution

time of p2.

NOTE 4 The execution time of P4 .FB1 is not included in the execution time of P4.

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 119
EN 61131-3:2002

RESOURCE R1

fastl slowl
to—————— to——————
| TASK | TASK
t#10ms---| INTERVAL t#20ms---| INTERVAL
1---|PRIORITY 2---| PRIORITY
to—————— to———
P1 o g
PROGRAM X
Y1
+-—— +
___|B
————— I =t
|slow1| | | | fastl|
+-——— + | | +-—— +
[
| | Y3
| | +-———— +
[ N I A
+-=]1-=-1A Cl---
+--|B D|-—-
+-———- +
| fastl]|
+-———- +

END PROGRAM

o«‘\

%
‘a

IEC 2496/02

Figure 21 a) - Synchronization of function blocks with explicit task associations



Page 120
EN 61131-3:2002

RESOURCE R1

fastl slowl
to—————— + to—————— + \
| TASK ; | TASK y ((\
t#10ms---| INTERVAL | t#20ms---| INTERVAL y c 0
1---|PRIORITY | 2-—-—-|PRIORITY 66 /
to—————— +

Pl
PROGRAM X
Y1
+-—— +
___|B
————— I =t
Ifastll | |
e 0
[
| | Y3
| | +-———— +
[ N I A
+-=]1-=-1A Cl---
+--|B D|-—-
+-———- +
END PROGRAM
slowl

IEC 2497/02

Figure 21 b) - Synchronization of function blocks with implicit task associations

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 121
EN 61131-3:2002

RESOURCE R1

fastl slowl
oo + oo +
|  TASK | TASK
t#10ms---| INTERVAL | t#20ms———|1NTERVA
1--—|PRIORITY | 2-—-| PRIOFwa
oo + \s:\
p1 . ‘\N ‘G
PROGRAM X \ N
Y1 * \ Y2
.
+ ~e83;> ERE— +
|i<:i | Y
S N o [ A C|---
—==|B  D|-==—|-—4————— I[B D|---
R + - ERE— +
| fastl] | | |slowl |
R + - ERE— +
[
I Y3
[ [ +
[ N A
+-—|-=|A C|---
+-—|B  D|---
R +
|slowl |
R +

END PROGRAM

o™

IEC 2498/02

Figure 21 c) - Explicit task associations equivalent to figure 21 b)



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 122
EN 61131-3:2002

3 Textual languages

The textual languages defined in this standard are IL (Instruction List) and ST (Structured Text).

sequential function chart (SFC) elements defined in 2.6 can be used in conjunction with eith

languages.

3.1 Common elements

The textual elements specified in clause 2 shall be co

s“@@\
S
g 29

he textual languages (IL and ST)

defined in this clause. In particular, the followin or tructuring elements shall be common to

textual languages:
TYPE. (2.3.3)

\v? (2.4.3)

VAR INPUT...END VAR (2.4.3)
VAR OUTPUT...END VAR (2.4.3)
VAR IN OUT...END VAR (2.4.3)
VAR EXTERNAL...END VAR (2.4.3)
VAR TEMP...END VAR (2.4.3)
VAR ACCESS...END VAR (2.4.3)
VAR GLOBAL...END VAR (2.4.3)
VAR CONFIG...END VAR (2.4.3)
FUNCTION ... END FUNCTION (2.5.1.3)
FUNCTION BLOCK...END FUNCTION BLOCK (2.5.2.2)
PROGRAM. . .END PROGRAM (2.5.3)
STEP...END STEP (2.6.2)
TRANSITION...END TRANSITION (2.6.3)
ACTION...END ACTION (2.6.4)

3.2 Instruction list (IL)

This subclause defines the semantics of the IL (Instruction List) language whose formal syntax is

given in B.2.

3.2.1 Instructions

As illustrated in table 51, an instruction list is composed of a sequence of instructions.

Each

instruction shall begin on a new line and shall contain an operator with optional modifiers, and, if
necessary for the particular operation, one or more operands separated by commas. Operands can
be any of the data representations defined in 2.2 for literals, in 2.3.3 for enumerated values, and in 2.4

for variables.

The instruction can be preceded by an identifying label followed by a colon (:). Empty lines can be
inserted between instructions.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-3:2002

Table 51 a) - Examples of instruction fields

LABEL OPERATOR OPERAND COMMENT ((\\
START: D SIX1 (* PUSH BUTTON *) (}0
S-
ANDN SMX5 (* NOT INHIBITED *)ge
ST %0X2 (* FAN ON * \)

3.2.2 Operators, modifiers and operands

Standard operators with their allowed i operands shall be as listed in table 52. The typing
of operators shall conform to the c§m t of 2.5.1.4.
.

Unless otherwise defined in‘@l&& , the semantics of the operators shall be
result := result OP operand

That is, the value of the expression being evaluated is replaced by its current value operated upon by
the operator with respect to the operand. For instance, the instruction AND %IX1 is interpreted as

result := result AND %I1X1

The comparison operators shall be interpreted with the current result to the left of the comparison and
the operand to the right, with a Boolean result. For instance, the instruction “GT %IW10” will have the
Boolean result 1 if the current result is greater than the value of Input Word 10, and the Boolean result
0 otherwise.

The modifier “N” indicates bitwise Boolean negation (one's complement) of the operand. For instance,
the instruction ANDN %IX2 is interpreted as

result := result AND NOT %IX2

It shall be an error in the sense of subclause 1.5.1 if the current result and operand are not of same
data type, or if the result of a numerical operation exceeds the range of values for its data type.

The left parenthesis modifier “(” indicates that evaluation of the operator shall be deferred until a right
parenthesis operator “)” is encountered. In table 51 b) two equivalent forms of a parenthesized
sequence of instructions are shown. Both features in table 51 b) shall be interpreted as

result := result AND (%IX1 OR %IX2)



Page 124
EN 61131-3:2002

Table 51 b) - Parenthesized expression features for IL language

No.

DESCRIPTION/EXAMPLE

Parenthesized expression beginning with explicit operator:

iI;D (%le (NOTE 1) ges

OR S%IX2

: A/Q

2 Parenthesized expres h Qbrm
A\
AND( $IX1 \
OR $IX2
) A\
NOTE Inform 1 the -0 may be modified or the LD operation may be
replaced m r operation or function invocation respectively.

Table 52 - Instruction list operators

The modifier “C” indicates that the associated instruction shall be performed only if the value of the
currently evaluated result is Boolean 1 (or Boolean 0 if the operator is combined with the “N” modifier).

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

No. | OPERATOR? | MODIFIERS SEMANTICS
(Note 1)
1 1D N Set current result equal to operand
2 ST N Store current result to operand location
3 ge Set operand to 1 if current result is Boolean 1
R® Reset operand to O if c1urrent result is Boolean
4 AND N, ( Logical AND
5 & N, ( Logical AND
6 OR N, ( Logical OR
7 XOR N, ( Logical exclusive OR
7a NoT¢ Logical negation (one's complement)
8 ADD ( Addition
9 SUB ( Subtraction
10 MUL ( Multiplication
11 DIV ( Division
11a | mop ( Modulo-division
12 GT ( Comparison: >
13 GE ( Comparison: >=
14 EQ ( Comparison: =
15 | e ( Comparison: <>
16 LE ( Comparison: <=
17 LT ( Comparison: <
18 JMPP c, N Jump to label
19 CALS c, N Call function block (See table 53)




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-

Table 52 - Instruction list operators

NOTE See preceding text for explanation of modifiers and ev p of <

expressions. g

@ Unless otherwise noted, these operators shaltb}“h roverloaded or typed as
defined in 2.5.1.4 and 2.5.1.5.6.

.

® The operand of a JMP instrugti the label of an instruction to which
execution is to be transfergell. n‘a JMP instruction is contained in an
ACTION... END_A construct, the operand shall be a label within the same
construct.

° The operand of thls instruction shall be the name of a function block instance to
be invoked.

4 The result of this operation shall be the bitwise Boolean negation (one's
complement) of the current result.

° The type of the operand of this instruction shall be BOOL.

" This instruction does not have an operand.

3.2.3 Functions and function blocks

Functions as defined in 2.5.1 shall be invoked by placing the function name in the operator field. As
shown in features 4 and 5 of table 53, this invocation can take one of two forms. The value returned by
a function upon the successful execution of a RET instruction or upon reaching the physical end of the
function shall become the “current result” described in 3.2.2.

The argument list of functions (feature 4 in table 53) is equivalent to feature 1 in table 19 a) . The rules
and features defined in 2.5.1.1 and table 19 a) for function calls apply.

A non-formal input list of functions (feature 5 in table 53) is equivalent to feature 2 in table 19 a). The
rules and features defined in 2.5.1.1 and table 19 a) for function calls apply. In contrast to the
examples given in table 19 a) for ST language, the first argument is not contained in the non-formal
input list in IL , but the current result shall be used as the first argument of the function. Additional
arguments (starting with the 2nd), if required, shall be given in the operand field, separated by
commas, in the order of their declaration.

Function blocks as defined in 2.5.2 can be invoked conditionally and unconditionally via the CAL (Call)
operator listed in table 52. As shown in features 1a, 1b, 2 and 3 of table 53, this invocation can take
one of four forms.

A formal argument list of a function block invocation (feature 1a in table 53) is equivalent to feature 1
in table 19 a). A non-formal argument list of a function block invocation (feature 1b in table 53) is
equivalent to feature 2 in table 19 a) . The rules and features defined in 2.5.1.1 and table 19 a) for
function calls apply correspondingly, by replacing each occurrence of the term ‘function’ by the term
‘function block’ in these rules.

All assignments in an argument list of a conditional function block invocation shall only be performed
together with the invocation, if the condition is true.

No. | OPERATOR? | MODIFIERS SEMANTICS
(Note 1) \
20 RETE c, N Return from called function, function block @3((\
program
21 )£ Evaluate deferred ope

Page 125
3:2002



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 126
EN 61131-3:2002

Table 53 - Function block invocation and

Function invocation features for IL language
No. DESCRIPTION/EXAMPLE
1a CAL of function block with non-formal argument list: p|6
CAL C10(%IX10, FALSE, A, OUT, B) a'\)g
CAL CMD_TMR (51X5, T#300ms, QUT, I
1b CAL of function block W|t r};ument list:
CAL C10( N o
CAL \ﬁ?"
$IX5,
:= T#300ms,
Q => OuT,
ET => ELAPSED,
ENO => ERR)
2 CAL of function block with load/store of arguments (note 2)
LD A
ADD 5
ST C10.PV
LD $TX10
ST C10.CU
CAL C10
3 Use of function block input operators:
LD A
ADD 5
PV C10
LD $TX10
CuU  C10
4 Function invocation with formal argument list:
LIMIT (
EN:= COND,
IN:= B,
MN:= 1,
MX:= 5,
ENO=>  TEMPL
)
ST A
5 Function invocation with non-formal argument list:
LD 1
LIMIT B, 5
ST A

00«\\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 127
EN 61131-3:2002

Table 53 - Function block invocation and
Function invocation features for IL language

No. DESCRIPTION/EXAMPLE 00(0\

NOTE 1 A declaration such as e|6 .
VAR
C10 : CTU; a,\)g

ELAPSED : T IME; Q? “
T, ERR, TEMPL, D

END_VAR
is assumed i |Q ve examples.

NOTE 2 %@e is an exception to the rule given in 2.5.2.1
thak’ aSsignment of a value to the inputs of a function
block is permitted only as part of the invocation of the
function block.”

The input operators shown in table 54 can be used in conjunction with feature 3 of table 53. This
method of invocation is equivalent to a CAL with an argument list, which contains only one variable
with the name of the input operator. Arguments, which are not supplied, are taken from the last
assignment or, if not present, from initialization. This feature supports problem situations, where
events are predictable and therefore only one variable can change from one call to the next.

EXAMPLE 1
Together with the declaration
VAR C10: CTU; END VAR

the instruction sequence

LD 15

PV Cc10
gives the same result as

CAL Cl10 (PV:=15)
The missing inputs R and CU have values previously assigned to them. Since the CU input
detects a rising edge, only the PV input value will be set by this call; counting cannot
happen because an unsupplied argument cannot change. In contrast to this, the

sequence
LD $IX10
CU C10

results in counting at maximum in every second call, depending on the change rate of the
input $1x10. Every call uses the previously set values for Pv and R.

EXAMPLE 2
With bistable function blocks, taking a declaration
VAR FORWARD: SR; END VAR

this results into an implicit conditional behavior. The sequence

LD FALSE
S1 FORWARD
does not change the state of the bistable FORWARD. A following sequence
LD TRUE
R FORWARD

resets the bistable.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 128
EN 61131-3:2002

Table 54 - Standard function block input operators for IL language

No. Operators FB Type Reference \
4 s1,R SR 2.5.2.3.1 0((\
5 S,R1 RS 2.5.2.31 C’> ‘CJ
6 CLK TRIGGER 2.5.2.%.‘ a

AN\
8 CU,R, PV CTU A X 3
9 | cp,ev cTD A“\‘I(\%.zs.s (note 1)

10 CU,CD, R, PV c N ‘\J‘ i 2.5.2.3.3 (note 1)
1M1 | e ‘ \‘\‘\N\&‘ 25.2.3.4
12 IN,PTA*“'O . TON 25234
13 IN,X\\’ v ToF 25234
NOTE 1 LD is not necessary as a Standard Function Block input

operator, because the LD functionality is included in pv.
NOTE 2 The feature numbering in this table is such as to
maintain consistency with the first edition of IEC 61131-3.

3.3 Structured Text (ST)

This subclause defines the semantics of the ST (Structured Text) language whose syntax is defined in
B.3. In this language, the end of a textual line shall be treated the same as a space (SP) character, as
defined in 2.1.4.

3.3.1 Expressions

An expression is a construct which, when evaluated, yields a value corresponding to one of the data
types defined in 2.3.1 and 2.3.3. The maximum allowed length of expressions is an implementation-
dependent parameter.

Expressions are composed of operators and operands. An operand shall be a literal as defined in 2.2,
an enumerated value as defined in 2.3.3, a variable as defined in 2.4, a function invocation as defined
in 2.5.1, or another expression.

The operators of the ST language are summarized in table 55. The evaluation of an expression
consists of applying the operators to the operands in a sequence defined by the operator precedence
shown in table 55. The operator with highest precedence in an expression shall be applied first,
followed by the operator of next lower precedence, etc., until evaluation is complete. Operators of
equal precedence shall be applied as written in the expression from left to right. For example, if 2, B,
C, and D are of type INT with values 1, 2, 3, and 4, respectively, then

A+B-C*ABS(D)
shall evaluate to -9, and

(A+B-C)*ABS(D)
shall evaluate to 0.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 129
EN 61131-3:2002

When an operator has two operands, the leftmost operand shall be evaluated first. For example, in
the expression
SIN(A)*COS(B)

the expression SIN(2) shall be evaluated first, followed by cos(B), followed by evaluationdﬁ\\

product. G

A 3
The following conditions in the execution of operators shall be treated as {@@%he sense of
subclause 1.5.1: a
Q9
1) An attempt is made to divide by zero. \ '\‘\a‘
eg{ion.

s the range of values for its data type.

2) Operands are not of the correct data type for

3) The result of a numerical operatiop

.
Boolean expressions may t)s]\“a\uged only to the extent necessary to determine the resultant value.
For instance, if A<=B, then o¥ly the expression (A>B) would be evaluated to determine that the value
of the expression
(A>B) & (C<D)
is Boolean zero.

Functions shall be invoked as elements of expressions consisting of the function name followed by a
parenthesized list of arguments, as defined in 2.5.1.1.

When an operator in an expression can be represented as one of the overloaded functions defined in
2.5.1.5, conversion of operands and results shall follow the rule and examples given in 2.5.1.4.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 130
EN 61131-3:2002

Table 55 - Operators of the ST language

No. Operation® Symbol Precedence -
1 Parenthesization (expression) HIGHEﬁT GU‘ )
2 Function evaluation identifier(argument list) gev ’
EXAMPLES LN (A), MAX(X,Y), etc. \)

4 Negation - '\‘\a

5 Complement NOT ‘\

3 Exponentiation® *x ‘N\“ ‘G
AN

6 Multiply “ \\
\Jd

7 Divide \(\‘\\Q /

8 Modulo MOD

9 Add +

10 Subtract -

11 Comparison <, >, <=, >=

12 Equality =

13 Inequality <>

14 Boolean AND &

15 Boolean AND AND

16 Boolean Exclusive OR XOR

17 Boolean OR OR LOWEST

NOTE The feature numbering in this table is such as to maintain consistency with the first edition
of IEC 61131-3.

@ The same restrictions apply to the operands of these operators as to the inputs of the
corresponding functions defined in 2.5.1.5.

® The result of evaluating the expression A**B shall be the same as the result of evaluating the
function EXPT (A, B) as defined in table 24.

3.3.2 Statements

The statements of the ST language are summarized in table 56. Statements shall be terminated by
semicolons as specified in the syntax of B.3. The maximum allowed length of statements is an
implementation-dependent parameter.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 131

EN 61131-3:2002

Table 56 - ST language statements

No. Statement type/Reference Examples
1 Assignment (3.3.2.1) A := B; CV := CV+l; C @ ;
2 Function block Invocation and FB output CMD TMR (IN:=%TX5 %%&{Oms ;
usage (3.3.2.2) a,
A := CMD HR’
RETURN (3.3.2.2) RE \(\U
Pl —
4 IF (3.3.2.3) M2 o - s
IF D < 0.0 THEN NROOTS := 0 ;
\\ ELSIF D = 0.0 THEN
\ NROOTS := 1 ;
'\, X1 := - B/(2.0*n) ;
ELSE
NROOTS := 2 ;
X1 := (- B + SQRT(D))/(2.0%Ra) ;
X2 := (- B - SQRT(D))/(2.0*n) ;
END_IF ;
5 CASE (3.3.2.3) TW := BCD TO_ INT (THUMBWHEEL) ;
TW _ERROR := 0;
CASE TW OF
1,5: DISPLAY := OVEN TEMP;
2: DISPLAY := MOTOR SPEED;
3: DISPLAY := GROSS - TARE;
4,6..10: DISPLAY := STATUS(TW - 4);
ELSE DISPLAY := 0 ;
TW _ERROR := 1;
END_CASE;
QW100 := INT TO BCD(DISPLAY);
6 FOR (3.3.2.4) J := 101 ;
FOR I := 1 TO 100 BY 2 DO
IF WORDS[I] = 'KEY' THEN
J =1,
EXIT ;
END_IF ;
END_FOR ;
7 WHILE (3.3.2.4) J = 1;
WHILE J <= 100 & WORDS[J] <> 'KEY' DO
J = J+2 ;
END WHILE ;
8 REPEAT (3.3.2.4) J = -1 ;
REPEAT
J = J+2 ;
UNTIL J = 101 OR WORDS[J] = 'KEY'
END REPEAT ;
9 EXIT (3.3.2.4)° EXIT ;
10 Empty Statement

’

?If the EXIT statement (9) is supported, then it shall be supported for all of the iteration statements
(FOR, WHILE, REPEAT) which are supported in the implementation.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 132

EN 61131-3:2002

3.3.2.1 Assignment statements

The assignment statement replaces the current value of a single or multi-element variable by the
result of evaluating an expression. An assignment statement shall consist of a variable referenc@\
the left-hand side, followed by the assignment operator “:=", followed by the expressj
evaluated. For instance, the statement

A := B ; \)ges‘
would be used to replace the single data value of variable 2 by the Clg%a‘\ue of variable B if both
were of type INT. However, if both 2 and B were of type m NCH#NEL CONFIGURATION as
described in table 12, then the values of all the ele the structured variable A would be

replaced by the current values of the correspondin et of variable B.

As illustrated in figure 6, the assignmen‘t \% shall also be used to assign the value to be returned by
a function, by placing the functi g¥d the left of an assignment operator in the body of the function
declaration. The value returmJ function shall be the result of the most recent evaluation of such an
assignment. It is an error to Neflrn from the evaluation of a function with an ENO value of TRUE, or with a
non-existent ENO output, unless at least one such assignment has been made.

3.3.2.2 Function and function block control statements

Function and function block control statements consist of the mechanisms for invoking function blocks
and for returning control to the invoking entity before the physical end of a function or function block.

Function evaluation shall be invoked as part of expression evaluation, as specified in 3.3.1.

Function blocks shall be invoked by a statement consisting of the name of the function block instance
followed by a parenthesized list of arguments, as illustrated in table 56. The rules and features defined
in 2.5.1.1 and table 19 a) for function calls apply correspondingly, by replacing each occurrence of the
term ‘function’ by the term ‘function block’ in these rules.

The RETURN statement shall provide early exit from a function, function block or program (for example,
as the result of the evaluation of an IF statement).

3.3.2.3 Selection statements

Selection statements include the IF and CASE statements. A selection statement selects one (or a
group) of its component statements for execution, based on a specified condition. Examples of
selection statements are given in table 56.

The IF statement specifies that a group of statements is to be executed only if the associated Boolean
expression evaluates to the value 1 (true). If the condition is false, then either no statement is to be
executed, or the statement group following the ELSE keyword (or the ELSIF keyword if its associated
Boolean condition is true) is to be executed.

The CASE statement consists of an expression which shall evaluate to a variable of type ANY_INT or
of an enumerated data type (the “selector”), and a list of statement groups, each group being labeled
by one or more integer or enumerated values or ranges of integer values, as applicable. It specifies
that the first group of statements, one of whose ranges contains the computed value of the selector,
shall be executed . If the value of the selector does not occur in a range of any case, the statement
sequence following the keyword ELSE (if it occurs in the CASE statement) shall be executed.
Otherwise, none of the statement sequences shall be executed.

The maximum allowed number of selections in CASE statements is an implementation-dependent
parameter.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 133
EN 61131-3:2002

3.3.2.4 lteration statements

Iteration statements specify that the group of associated statements shall be executed repeatedly. The
FOR statement is used if the number of iterations can be determined in advance; otherwise, the W%
or REPEAT constructs are used.

.
The EXIT statement shall be used to terminate iterations before the termination\&@%% satisfied.

When the EXTIT statement is located within nested iterative construg ,j%@'\l be from the innermost
loop in which the EXIT is located, that is, control shall pass xt sfatement after the first loop
terminator (END_FOR, END WHILE, or END REPEAT) follgﬁgg EXIT statement. For instance, after
executing the statements shown in figure 22, the e variable sSuM shall be 15 if the value of
the Boolean variable FLAG is 0, and 6 if ]iL%\ >

LN

ALY

V\ I :=1 TO 3 DO
FOR J := 1 TO 2 DO

IF FLAG THEN EXIT ; END IF

SUM := SUM + J ;
END FOR ;
SUM := SUM + I ;
END FOR ;

IEC 2499/02

Figure 22 - EXIT statement example

The FOR statement indicates that a statement sequence shall be repeatedly executed, up to the
END FOR keyword, while a progression of values is assigned to the FOR loop control variable. The
control variable, initial value, and final value shall be expressions of the same integer type (for
example, SINT, INT, or DINT) and shall not be altered by any of the repeated statements. The FOR
statement increments the control variable up or down from an initial value to a final value in
increments determined by the value of an expression; this value defaults to 1. The test for the
termination condition is made at the beginning of each iteration, so that the statement sequence is not
executed if the initial value exceeds the final value. The value of the control variable after completion
of the FOR loop is implementation-dependent.

An example of the usage of the FOR statement is given in feature 6 of table 56. In this example, the
FOR loop is used to determine the index J of the first occurrence (if any) of the string 'KEY" in the odd-
numbered elements of an array of strings WORDS with a subscript range of (1..100). If no occurrence
is found, J will have the value 101.

The WHILE statement causes the sequence of statements up to the END WHILE keyword to be
executed repeatedly until the associated Boolean expression is false. If the expression is initially
false, then the group of statements is not executed at all. For instance, the FOR. . .END FOR example
given in table 56 can be rewritten using the WHILE. . .END_WHILE construction shown in table 56.

The REPEAT statement causes the sequence of statements up to the UNTIL keyword to be executed
repeatedly (and at least once) until the associated Boolean condition is true. For instance, the
WHILE...END WHILE example given in table 56 can be rewritten using the REPEAT. . .END REPEAT
construction shown in table 56.

The WHILE and REPEAT statements shall not be used to achieve interprocess synchronization, for
example as a "wait loop" with an externally determined termination condition. The SFC elements
defined in 2.6 shall be used for this purpose.

It shall be an error in the sense of 1.5.1 if a WHILE or REPEAT statement is used in an algorithm for
which satisfaction of the loop termination condition or execution of an EXIT statement cannot be
guaranteed.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 134

EN 61131-3:2002

4 Graphic languages

The graphic languages defined in this standard are LD (Ladder Diagram) and FBD (Function Block
Diagram). The sequential function chart (SFC) elements defined in 2.6 can be used in conjunciti
with either of these languages. GO

4.1 Common elements 66 *

The elements defined in this clause apply to both the graphic Ianguagew;g]dard, that is, LD

(Ladder Diagram) and FBD (Function Block Diagram), and to the ngu resentation of sequential

function chart (SFC) elements. ‘\‘\(\
G

use are drawn with line elements using characters
r Using graphic or semigraphic elements, as shown in table

4.1.1 Representation of lines and blocks

The graphic language elements define l
from the character set defined ig\' *

57. \ .

Lines can be extended by the use of connectors as shown in table 57. No storage of data or
association with data elements shall be associated with the use of connectors; hence, to avoid
ambiguity, it shall be an error if the identifier used as a connector label is the same as the name of
another named element within the same program organization unit.

Any restrictions on network topology in a particular implementation shall be expressed as
implementation-dependent parameters.

4.1.2 Direction of flow in networks

A network is defined as a maximal set of interconnected graphic elements, excluding the left and right
rails in the case of networks in the LD language defined in 4.2. Provision shall be made to associate
with each network or group of networks in a graphic language a network label delimited on the right by
a colon (:). This label shall have the form of an identifier or an unsigned decimal integer as defined in
clause 2. The scope of a network and its label shall be local to the program organization unit in which
the network is located. Examples of networks and network labels are shown in annex F.

Graphic languages are used to represent the flow of a conceptual quantity through one or more
networks representing a control plan, that is:

- “Power flow”, analogous to the flow of electric power in an electromechanical relay system,
typically used in relay ladder diagrams;

- “Signal flow”, analogous to the flow of signals between elements of a signal processing system,
typically used in function block diagrams;

- “Activity flow”, analogous to the flow of control between elements of an organization, or between
the steps of an electromechanical sequencer, typically used in sequential function charts.

The appropriate conceptual quantity shall flow along lines between elements of a network according to
the following rules:

1) Power flow in the LD language shall be from left to right.

2) Signal flow in the FBD language shall be from the output (right-hand) side of a function or
function block to the input (left-hand) side of the function or function block(s) so connected.

3) Activity flow between the SFC elements defined in 2.6 shall be from the bottom of a step
through the appropriate transition to the top of the corresponding successor step(s).



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Table 57 - Representation of lines and blocks

Page 135

EN 61131-3:2002

No. Feature Example
Horizontal lines: (C
1 ISO/IEC 10646-1 “minus” character | ——___ GO
2 Graphic or semigraphic o 06 .
Vertical lines: \)gv
3 ISO/IEC 10646-1 “vertical line” character Qa»
4 Graphic or semigraphic . "(\a,’
Horizontal/vertical connection: G‘\\‘ ) |
5 ISO/IEC 10646-1 “plus” cha Mo e
|
6 Graphicp\re‘r\l hic
Line cr & ifhout connection: [ [
7 ISO 0646-1 characters | —_______ [—
| |
8 Graphic or semigraphic
Connected and non-connected corners: [ [
____+ +____
9 ISO/IEC 10646-1 characters |
————t—t -
[
10 Graphic or semigraphic
Blocks with connecting lines: [
Fo———— +
- |
1 ISO/IEC 10646-1 characters | —
- |
Fo———— +
12 Graphic or semigraphic |
13 Connectors using ISO/IEC 10646-1 characters:
Connector | _________ >OTTO>
Continuation of a connected line SOTTO>—————— e —
14 Graphic or semigraphic connectors

4.1.3 Evaluation of networks

The order in which networks and their elements are evaluated is not necessarily the same as the

order in which they are labeled or displayed.

Similarly, it is not necessary that all networks be

evaluated before the evaluation of a given network can be repeated. However, when the body of a
program organization unit consists of one or more networks, the results of network evaluation within
the said body shall be functionally equivalent to the observance of the following rules:

1) No element of a network shall be evaluated until the states of all of its inputs have been

evaluated.

2) The evaluation of a network element shall not be complete until the states of all of its outputs

have been evaluated.

3) The evaluation of a network is not complete until the outputs of all of its elements have been

evaluated, even if the network contains one of the execution control elements defined in 4.1.4.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 136
EN 61131-3:2002

4) The order in which networks are evaluated shall conform to the provisions of 4.2.6 for the LD

language and 4.3.3 for the FBD language.

A feedback path is said to exist in a network when the output of a function or function block is use
the input to a function or function block which precedes it in the network; the assomated
called a feedback variable. For instance, the Boolean variable RUN is the feedbac
example shown in figure 23. A feedback variable can also be an output elem é
data structure as defined in 2.5.2. ’Q

Feedback paths can be utilized in the graphic languages “@fngz and 4.3, subject to the
following rules:

1) Explicit loops such as the one shown in fi haII only appear in the FBD language
defined in 4.3.
Al

2) It shall be possible for th
the order of executlom\ ements in an explicit loop, for instance by selection of feedback
variables to form an inlicit loop as shown in figure 23 b).

3) Feedback variables shall be initialized by one of the mechanisms defined in clause 2. The initial
value shall be used during the first evaluation of the network. It shall be an error if a feedback

variable is not initialized.

4) Once the element with a feedback variable as output has been evaluated, the new value of the

feedback variable shall be used until the next evaluation of the element.

a) FR——
ENABLE---| & |--—-- RUN--—+
bl |
T |
START1--—|>=1|---+ |
START2--—| | |
+== | |
| et |
o +
b) SR
ENABLE---| & |----- RUN
bl
T T —
START1---|>=1|-——+
START2---| |
RUN---| |
R
c) | START1 ENABLE RUN |
e e o IS (-t
| START2 | |
mmm| oot |
| RUN | \
mmm| oot |
| \

IEC 2500/02

Figure 23 - Feedback path example
a) Explicit loop
b) Implicit loop
c) LD language equivalent

ctlon block

ilize an implementation-dependent means to determine



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-

4.1.4 Execution control elements

Page 137
3:2002

Transfer of program control in the LD and FBD languages shall be represented by the g 6!«\\

elements shown in table 58.

Jumps shall be shown by a Boolean signal line terminated in a double arrowhe gnal line for
a jump condition shall originate at a Boolean variable, at a Boolean out ct|on or function
block, or on the power flow line of a ladder diagram. A transfer of ro ntroI to the designated
network label shall occur when the Boolean value of the signai I(\ E); thus, the unconditional
jump is a special case of the conditional jump. %\

The target of a jump shall be a network lab
jump occurs. If the jump occurs W|th|n
shall be within the same construg{'

the program organization unit within which the
.END ACTION construct, the target of the jump

Conditional returns from f |ons and function blocks shall be implemented using a RETURN
construction as shown in table 58. Program execution shall be transferred back to the invoking entity
when the Boolean input is 1 (TRUE), and shall continue in the normal fashion when the Boolean input
is 0 (FALSE). Unconditional returns shall be provided by the physical end of the function or function
block, or by a RETURN element connected to the left rail in the LD language, as shown in table 58.

Table 58 - Graphic execution control elements

No. Symbol/Example Explanation
Unconditional Jjump:
1 1--—->>LABELA FBD language
I
2 o SSLABELA LD language
I
Conditional jump
3 X---->>LABELB (FBD language)
et Example:
$IX20---| & |--->>NEXT jump condition
$MX50-—- | |
+———+
NEXT:
+———+ .
ump target
$TX25--—|>=1]---3QX100 Jurnp farg
SMX60-—— | |
+———+
| X Conditional jump
4 +-| |---->>LABELB (LD language)
I
| .
| %IX20  %MX50 ~ Example:
SRR T | | ——=>>NEXT jump condition
I
| jump target
NEXT Jump targ
| %IX25 %0x100 |
R I R SRt
| %Mx60 | |
S |
I I




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 138
EN 61131-3:2002

Table 58 - Graphic execution control elements

No.

Symbol/Example
| X
+-- |
|

| ———<RETURN>

X-——<RETURN>

Explanation

Conditional return:
LD language

FBD Ianiﬂes

-~ \

Q

.

-

END FUNCTION
END FUNCTION BLOCK

+-——<RETURN>, \\

! ‘-’(@‘

Unw return:
-

’ afro FUNCTION
\§
G from FUNCTION BLOCK
* Alternative representation
in LD language

W

4.2 Ladder diagram (LD)

This subclause defines the LD language for ladder diagram programming of programmable

controllers.

A LD program enables the programmable controller to test and modify data by means of standardized
graphic symbols. These symbols are laid out in networks in a manner similar to a “rung” of a relay
ladder logic diagram. LD networks are bounded on the left and right by power rails.

4.2.1 Power rails

As shown in table 59, the LD network shall be delimited on the left by a vertical line known as the /eft
power rail, and on the right by a vertical line known as the right power rail. The right power rail may be
explicit or implied.

Table 59 - Power rails

No. Symbol Description
1 | Left power rail
+- - - (with attached horizontal link)
|
2 [ Right power rail
-t (with attached horizontal link)
|

4.2.2 Link elements and states

As shown in table 60, link elements may be horizontal or vertical. The state of the link element shall
be denoted “ON” or “OFF”, corresponding to the literal Boolean values 1 or O, respectively. The term
link state shall be synonymous with the term power flow.

The state of the left rail shall be considered ON at all times.. No state is defined for the right rail.

A horizontal link element shall be indicated by a horizontal line. A horizontal link element transmits the
state of the element on its immediate left to the element on its immediate right.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 139
EN 61131-3:2002

The vertical link element shall consist of a vertical line intersecting with one or more horizontal link
elements on each side. The state of the vertical link shall represent the inclusive OR of the ON states
of the horizontal links on its left side, that is, the state of the vertical link shall be:

- OFF if the states of all the attached horizontal links to its left are OFF; 0((\\
- ON if the state of one or more of the attached horizontal links to its left is ON. G

The state of the vertical link shall be copied to all of the attached horizont Iw) r|ght The state
of the vertical link shall not be copied to any of the attached horlzo )‘é its left.

Table 60 - Li eI s

No. Symbol Description
1 | --a-- "“‘5-9 1 Horizontal link
2 |\
o Vertical link

(with attached horizontal links)

FRE

4.2.3 Contacts

A contact is an element which imparts a state to the horizontal link on its right side which is equal to
the Boolean AND of the state of the horizontal link at its left side with an appropriate function of an
associated Boolean input, output, or memory variable. A contact does not modify the value of the
associated Boolean variable. Standard contact symbols are given in table 61.

4.2.4 Coils

A coil copies the state of the link on its left to the link on its right without modification, and stores an
appropriate function of the state or transition of the left link into the associated Boolean variable.
Standard coil symbols are given in table 62.

EXAMPLE In the rung shown below, the value of the Boolean output a is always TRUE, while the
value of outputs ¢, d and e upon completion of an evaluation of the rung is equal to the value of the
input b.

4.2.5 Functions and function blocks

The representation of functions and function blocks in the LD language shall be as defined in clause 2,
with the following exceptions:

1) Actual variable connections may optionally be shown by writing the appropriate data or variable
outside the block adjacent to the formal variable name on the inside.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 140
EN 61131-3:2002

2) At least one Boolean input and one Boolean output shall be shown on each block to allow for
power flow through the block.

4.2.6 Order of network evaluation

Within a program organization unit written in LD, networks shall be evaluated in to a
they appear in the ladder diagram, except as this order is modified by the ex @

defined in 4.1.4.

-
Table 61 - Conta,\g?i\(\a

m order as
ntrol elements

.
Staticﬁh‘ac\g
No. Symbol A Description
xoxk \\ Normally open contact
1 b= \\ The state of the left link is copied to the right link if the
or state of the associated Boolean variable (indicated by
o mxxxmy jg ON. Otherwise, the state of the right link is
2 s OFF.
ok k Normally closed contact
3 —1/|-- The state of the left link is copied to the right link if the
; state of the associated Boolean variable is OFF.
° Otherwise, the state of the right link is OFF.
4 | —1/1--
Transition-sensing contacts
ok x Positive transition-sensing contact
5 —|P|-- The state of the right link is ON from one evaluation of
this element to the next when a transition of the
or associated variable from OFF to ON is sensed at the
* oKk same time that the state of the left link is ON. The state
6 ——!p!l—- of the right link shall be OFF at all other times.
* ok Negative transition-sensing contact
7 ——|N|-- The state of the right link is ON from one evaluation of
this element to the next when a transition of the
or associated variable from ON to OFF is sensed at the
* oKk same time that the state of the left link is ON. The state
8 ——IN!-—- of the right link shall be OFF at all other times.
@ As specified in 2.1.1, the exclamation mark “!” shall be used when a national
character set does not support the vertical bar “|”.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 141

EN 61131-3:2002

Table 62 - Coils

No.

Symbol

Description

Momentary coils C

Coil S
The state of the left link is copied ‘}%ociated
Boolean variable and to(r\ link.

©eoi”
The state of the i copied to the right link. The
i e

inverse e of the left link is copied to the

1 olean variable, that is, if the state of the

OFF, then the state of the associated variable
is ON, and vice versa.

Latched Coils

SET (latch) coil
The associated Boolean variable is set to the ON state
when the left link is in the ON state, and remains set
until reset by a RESET coil.

RESET (unlatch) coil
The associated Boolean variable is reset to the OFF
state when the left link is in the ON state, and remains
reset until set by a SET coil.

Transition-sensing coils

Positive transition-sensing coil
The state of the associated Boolean variable is ON from
one evaluation of this element to the next when a
transition of the left link from OFF to ON is sensed. The
state of the left link is always copied to the right link.

Negative transition-sensing coil
The state of the associated Boolean variable is ON from
one evaluation of this element to the next when a
transition of the left link from ON to OFF is sensed. The
state of the left link is always copied to the right link.

NOTE Features 5, 6 and 7 of the first edition are deleted in this edition.

o\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 142

EN 61131-3:2002

4.3 Function Block Diagram (FBD)

4.3.1 General

This subclause defines FBD, a graphic language for the programming of programmable o Qlers
which is consistent, as far as possible, with IEC 60617-12. Where conflicts tween this
standard and IEC 60617-12, the provisions of this standard shall apply @gogrammmg of
programmable controllers in the FBD language.

The provisions of clause 2 and subclause 4.1 shall apply f “&HQC’[IOH and interpretation of
programmable controller programs in the FBD language. Q\

Examples of the use of the FBD Ianguage are giv anlex F

4.3.2 Combination of element

Elements of the FBD Iangu@x be interconnected by signal flow lines following the conventions
of 4.1.2.

Outputs of function blocks shall not be connected together. In particular, the “wired-OR” construct of
the LD language is not allowed in the FBD language; an explicit Boolean “OR” block is required
instead, as shown in figure 24.

a) b)
| a C | +————= +
tm—= | | ==+== () ==+ a---| >=1 |---c
| b | I b-—-| |
=] ===+ | tm———- +
| I

IEC 2501/02

Figure 24 - Boolean OR examples
a) “Wired-oR” in LD language
b) Function in FBD language

4.3.3 Order of network evaluation

When a program organization unit written in the FBD language contains more than one network, the
manufacturer shall provide implementation-dependent means by which the user may determine the
order of execution of networks.

\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 143

EN 61131-3:2002
ANNEX A
(normative)
Specification method for textual languages ((\
Programming languages are specified in terms of a syntax, which specm wable
combinations of symbols which can be used to define a program; and a se t/cs which
specify the relationship between programmed operations and the symbol C| s defined by the

syntax. a‘,
At N
.1 Syntax G

A syntax is defined by a set of termina e utilized for program specification; a set of non-
terminal symbols defined in terms ofet ; rthinal symbols; and a set of production rules specifying

those definitions. \\\\Q .

A.1.1 Terminal symbols

The terminal symbols for textual programmable controller programs shall consist of combinations of
the characters in the character set defined in 2.1.1.

For the purposes of this part, terminal textual symbols consist of the appropriate character string
enclosed in paired single or double quotes. For example, a terminal symbol represented by the
character string ABC can be represented by either

"ABC"
or

"ABC'

This allows the representation of strings containing either single or double quotes; for instance, a
terminal symbol consisting of the double quote itself would be represented by '" .

A special terminal symbol utilized in this syntax is the end-of-line delimiter, which is represented by the
unquoted character string EOL. This symbol shall normally consist of the “paragraph separator”
character defined as hexadecimal code 2029 by ISO/IEC 10646-1.

A second special terminal symbol utilized in this syntax is the “null string”, that is, a string containing
no characters. This is represented by the terminal symbol NIL.

The case of letters shall not be significant in terminal symbols.

A.1.2 Non-terminal symbols

Non-terminal textual symbols shall be represented by strings of lower-case letters, numbers, and the
underline character (_), beginning with a lower-case letter. For instance, the strings

nonterml
and
non term 2

are valid non-terminal symbols, while the strings

3nonterm
and

_nontermé
are not.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 144

EN 61131-3:2002

A.1.3 Production rules

The production rules for textual programmable controller programming languages shall form an
extended grammar in which each rule has the form 0((\

non terminal symbol ::= extended structure
S-
This rule can be read as: ge

“A non_terminal_symbol can consist of an extended
ave s
Extended structures can be constructed according to the fwf@ S:
1) The null string, NI1, is an extended structure. G
.
2) A terminal symbol is an extended s{w
3) A non-terminal symbol is a ?‘e‘r\j d’structure.

4) If s is an extended strxa&‘e,

(s), meaning s itself.

en the following expressions are also extended structures:

{s}, closure, meaning zero or more concatenations of s.

[s], option, meaning zero or one occurrence of S.

5) If s1 and s2 are extended structures, then the following expressions are extended structures:
S1 | s2, alternation, meaning a choice of S1 or s2.
S1 S2, concatenation, meaning S1 followed by s2.

6) Concatenation precedes alternation, that is, S1 S2 S3isequivalentto S1 | (sS2 S3),
and sS1 s2 | s3isequivalentto (S1 s2) | S3.

A.2 Semantics

Programmable controller textual programming language semantics are defined in this part of IEC
61131 by appropriate natural language text, accompanying the production rules, which references the
descriptions provided in the appropriate clauses. Standard options available to the user and
manufacturer are specified in these semantics.

In some cases it is more convenient to embed semantic information in an extended structure. In such
cases, this information is delimited by paired angle brackets, for example, <semantic
information>.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 145
EN 61131-3:2002

ANNEX B
(normative)
Formal specifications of language elements 0((\

B.0 Programming model

all the syntax in this annex shall be capable of recognizing the sx any textual language
implementation complying with this standard.

e
PRODUCTION RULES: G

library element name ::= a Nlname function name
| function block ty Q program_type name

| resource type conflguratlon name
ration

The contents of this annex are normative in the sense that a compiler w| Sa Q)Ie of recognizing

library element de ::= data type declaration
| function declaration | function block declaration
| program declaration | configuration declaration

SEMANTICS: These productions reflect the basic programming model defined in 1.4.3, where
declarations are the basic mechanism for the production of named library elements. The syntax and
semantics of the non-terminal symbols given above are defined in the subclauses listed below.

Non-terminal symbol Syntax Semantics
data type name B.1.3 2.3

data type declaration
function name B.1.5.1 2.5.1

function declaration

function block type name B.1.5.2 2.5.2

function block declaration

program type name B.1.5.3 2.5.3

program declaration

resource_ type name

configuration name B.1.7 2.7

configuration declaration

B.1 Common elements
B.1.1 Letters, digits and identifiers

PRODUCTION RULES:

letter =::= 'A' | 'B' | <...> | '2'" | 'a' | '"b'" | <...> | 'z'

digit ::= '0" | '1' | '2"' | '3" | '4' | 'S5' | ‘'e' [ '7' | '8' | '9

octal digit ::= '0" [ '1' [ ‘'2' [ '3" | '4' | 'S5' | 'e' | '7'

hex digit ::= digit | 'A'|'B'|'C'|'D'|'E'|'F"

identifier ::= (letter | (' ' (letter | digit))) {[' '] (letter | digit)}



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-3:2002

SEMANTICS:
The ellipsis <. . . > here indicates the ISO/IEC 10646-1 sequence of 26 letters.

Characters from national character sets can be used; however, international portability of the an\
representation of programs cannot be guaranteed in this case. CJ

B.1.2 Constants \)g

PRODUCTION RULE: g
constant ::= numeric_ llteral characte \EQQCé | time literal
| bit_strlng_llteral oolean
SEMANTICS:

The external representations of qw \l’lbed in 2.2 are designated as “constants” in this annex.

B.1.2.1 Numeric Iiterals

PRODUCTION RULES:

numeric literal

integer literal | real literal

integer literal ::= [ integer type name '#' ]
( signed integer | binary integer | octal integer | hex integer)

signed integer ::= ['+' |'-'] integer
integer ::= digit {['_ '] digit}
binary integer ::= '2#' bit {['_ '] bit}
bit ::= '1'" | '0"
octal integer ::= '8#' octal digit {[' '] octal digit}
hex integer ::= 'l6#' hex digit {[' '] hex digit}
real literal ::= [ real type name '#' ]
signed integer '.' integer [exponent]
exponent ::= ('E' | 'e') ['+'|'-"] integer

bit string literal ::=
[ ("BYTE' | 'WORD' | 'DWORD' | 'LWORD') '#' ]
( unsigned integer | binary integer | octal integer | hex integer)

boolean literal ::=
( [ 'BOOL#'" ] ( '1" | '0" ) )| 'TRUE' | 'FALSE'

SEMANTICS: see 2.2.1.
B.1.2.2 Character strings

PRODUCTION RULES:

character string ::=
single byte character string | double byte character string

single byte character string ::=
"'" {single byte character representation} "'"

double byte character string ::=
'"'" {double byte character representation} '"'



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 147
EN 61131-3:2002

single byte character representation ::= common character representation
[ "S$'™ | '"™' | '$' hex digit hex digit

double byte character representation ::= common character representation \
| 'Sttt "' 'S' hex digit hex digit hex digit hex digit 0(0

common character representation ::= €5'
<any printable character except 'S$', '"' or "'"> e
| 'S$T | 'SL' | 'SN' | 'SP | 'SR | ST \)

| '$l' | lsnl | lsp! | !$r! | !$t! ’ga
SEMANTICS: see 2.2.2. ‘\\(\6«

.

B.1.2.3 Time literals

‘\\

PRODUCTION RULE: \ .
time literal ::=d fion | time of day | date | date and time

SEMANTICS: see 2.2.3.

B.1.2.3.1 Duration

PRODUCTION RULES:

duration ::= ('T' | 'TIME') '#' ['-'] interval

interval ::= days | hours | minutes | seconds | milliseconds
days ::= fixed point ('d') | integer ('d"') [' '] hours

fixed point ::= integer [ '.' integer]

hours ::= fixed point ('h') | integer ('h') [' '] minutes
minutes ::= fixed point ('m') | integer ('m') [' '] seconds
seconds ::= fixed point ('s') | integer ('s') [' '] milliseconds
milliseconds ::= fixed point ('ms')

SEMANTICS: see 2.2.3.1.
NOTE The semantics of 2.2.3.1 impose additional constraints on the allowable values of hours,
minutes, seconds, and milliseconds.
B.1.2.3.2 Time of day and date
PRODUCTION RULES:

time of day ::= ('TIME OF DAY' | 'TOD') '#' daytime
daytime ::= day hour ':' day minute ':' day second
day hour ::= integer

day minute ::= integer

day second ::= fixed point

date ::= ('DATE' | 'D') '#' date literal

date literal ::= year '-' month '-' day

year ::= integer



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 148
EN 61131-3:2002

month ::= integer
day ::= integer
date and time ::= ('DATE AND TIME' | 'DT') '#' date literal '-' daytim@\

SEMANTICS: see 2.2.3.2.
S G
NOTE The semantics of 2.2.3.2 impose additional constraints on the amg alues of
day hour, day minute, day second, year, moT:S .
-

B.1.3 Data types \(\‘\(\a
PRODUCTION RULES: ‘G
data type name ::= non_genjL' € name | generic type name
.

.
non generic t ype_nam“@

SEMANTICS: see 2.3.

ementary type name | derived type name

B.1.3.1 Elementary data types

PRODUCTION RULES:

elementary type name ::= numeric_ type name | date type name
| bit string type name | 'STRING' | 'WSTRING' | 'TIME'

numeric_type name ::= integer type name | real type name

integer type name ::= signed integer type name

| unsigned integer type name

signed integer type name ::= 'SINT' | 'INT' | 'DINT' | 'LINT'

unsigned integer type name ::= 'USINT' | 'UINT' | 'UDINT' | '"ULINT'

real type name ::= 'REAL' | 'LREAL'

date type name ::= 'DATE' | 'TIME OF DAY' | 'TOD' | 'DATE AND TIME'
| 'DT'

bit string type name ::= 'BOOL' | 'BYTE' | 'WORD' | 'DWORD' | 'LWORD'

SEMANTICS: See 2.3.1.
B.1.3.2 Generic data types

PRODUCTION RULE:

generic_type name ::= 'ANY' | 'ANY DERIVED' | 'ANY ELEMENTARY'
| '"ANY MAGNITUDE' | 'ANY NUM' | 'ANY REAL' | 'ANY INT' | 'ANY BIT'
| "ANY STRING' | 'ANY DATE'

SEMANTICS: see 2.3.2.
B.1.3.3 Derived data types

PRODUCTION RULES:

derived type name ::= single element type name | array type name
| structure type name | string type name
single element type name ::= simple type name | subrange type name

| enumerated type name



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 149
EN 61131-3:2002

simple type name ::= identifier

subrange type name ::= identifier

enumerated type name ::= identifier (0\
array type name ::= identifier (;S)

S.
structure type name ::= identifier ge
data type declaration ::= a,

'TYPE' type declaration ';' a‘fg
{type declaration ';'} \(\
"END TYPE' G\(\
type declaration ::= single ele \ ﬁ%ideclaration
| array type declarati
| structure typ d§2§2€ tlon | string type declaration

e
single element typ ‘ig_ration ::= simple type declaration
| subrange type declaration | enumerated type declaration

simple type declaration ::= simple type name ':' simple spec init
simple spec init := simple specification [':=' constant]

simple specification ::= elementary type name | simple type name
subrange type declaration ::= subrange type name ':' subrange spec init
subrange spec init ::= subrange specification [':=' signed integer]
subrange specification ::= integer type name ' (' subrange')'

| subrange type name
subrange ::= signed integer '..' signed integer
enumerated type declaration ::=
enumerated type name ':' enumerated spec init

enumerated spec init ::= enumerated specification [':=' enumerated value]

enumerated specification ::=
( '"(' enumerated value {',' enumerated value} ')' )
| enumerated type name

enumerated value ::= [enumerated type name '#'] identifier
array type declaration ::= array type name ':' array spec_init
array spec_init ::= array specification [':=' array initialization]
array specification ::= array type name
| "ARRAY' '[' subrange {',' subrange} ']' 'OF' non generic_ type name

array initialization ::=
'['" array initial elements {',' array initial elements} ']'

array initial elements ::=
array initial element | integer ' (' [array initial element] ')'

array initial element ::= constant | enumerated value
| structure initialization | array initialization

structure type declaration ::=
structure type name ':' structure specification

structure specification ::= structure declaration | initialized structure



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 150
EN 61131-3:2002

initialized structure ::=

structure type name [':=' structure initialization]

structure declaration ::= \
'STRUCT' structure element declaration ';' 0(0
{structure element declaration ';'} (;

'END_STRUCT' 66 g
structure element declaration ::= structure element n
(simple spec init | subrange spec init enum@d spec_init
| array spec init | initialized structu
structure element name ::= identifier (;

structure initialization
' (' structure element

{'"," structure i;f Vinitialization} ')

structure element \Qaa zation ::=
structure_ele name ':=' (constant | enumerated value
| array initialization | structure initialization)

string type name ::= identifier

string type declaration ::= string type name ':'
("STRING'|'WSTRING') ['[' integer ']'] [':=' character string]

SEMANTICS: see 2.3.3.

B.1.4 Variables

PRODUCTION RULES:

variable ::= direct variable | symbolic variable
symbolic variable ::= variable name | multi element variable
variable name ::= identifier

SEMANTICS: see 2.4.1.

B.1.4.1 Directly represented variables

PRODUCTION RULES:

direct variable ::= '%' location prefix size prefix integer {'.' integer}
location prefix = 'I'" | 'Q" | 'M'
size prefix ::= NIL | 'X' | 'B' | 'W' | 'D'" | 'L'
SEMANTICS: see 2.4.1.1.
B.1.4.2 Multi-element variables
PRODUCTION RULES:
multi element variable ::= array variable | structured variable
array variable ::= subscripted variable subscript list
subscripted variable ::= symbolic variable
subscript list ::= '[' subscript {',' subscript} ']’



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 151
EN 61131-3:2002

subscript ::= expression

structured variable ::= record variable '.' field selector

record variable ::= symbolic variable (0\
field selector ::= identifier (:S)

SEMANTICS: see 2.4.1.2. 0@65 )
e
PRODUCTION RULES: G

B.1.4.3 Declaration and initialization

input declarations

'VAR INPUT' ['RETAIN;\\ _RETAIN']

inputdeclaratiw .

{input declarXt i)

'"END VAR'
input declaration ::= var init decl | edge declaration
edge declaration ::= varl list ':' 'BOOL' ('R EDGE' | 'F EDGE')
var _init decl ::= varl init decl | array var init decl

| structured var init decl | fb name decl | string var declaration
varl init decl ::= wvarl list ':'

(simple spec init | subrange spec init | enumerated spec init)
varl list ::= variable name {',' variable name}
array var init decl ::= varl list ':' array spec init
structured var init decl ::= varl list ':' initialized structure
fb name decl ::= fb name list ':' function block type name

[ ":=' structure initialization ]
fb name list ::= fb name {',' fb name}
fb name ::= identifier
output declarations ::=
'VAR OUTPUT' ['RETAIN' | 'NON RETAIN']
var_init decl ';'
{var init decl ';'}
'"END VAR'

input output declarations
'"VAR_IN OUT'
var declaration ';'
{var declaration ';'}

'"END VAR'
var declaration ::= temp var decl | fb name decl
temp var decl ::= varl declaration | array var declaration
| structured var declaration | string var declaration
varl declaration ::= wvarl list ':' (simple specification

| subrange specification | enumerated specification)



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 152
EN 61131-3:2002

array var declaration ::= varl list ':' array specification
structured var declaration ::= varl list ':' structure type name

var declarations ::=

'VAR' ['CONSTANT'] 00(0\

var_init decl ';' 6 .
{(var_init decl ';'")} e
'"END VAR' 6'\)

‘ (3 )

.
'VAR' 'RETAIN' \“
var init decl ';'
‘G( '

{var init decl ';'}

retentive var declarations

"END VAR'
located var declarati !
- - A
'VAR' ['CONST WRETAIN‘ | "NON RETAIN']
located var \l&c 7!
{located var decl ';'}
"END VAR'
located var decl ::= [variable name] location ':' located var spec init

external var declarations :=
'VAR _EXTERNAL' ['CONSTANT']
external declaration ';'
{external declaration ';'}
'"END VAR'

external declaration ::= global var name ':'
(simple specification | subrange specification
| enumerated specification | array specification
| structure type name | function block type name)

global var name ::= identifier

global var declarations :=
'VAR GLOBAL' ['CONSTANT' | 'RETAIN']
global var decl ';'
{global var decl ';'}

"END VAR'
global var decl ::= global var spec ':'

[ located var spec init | function block type name ]
global var spec ::= global var list | [global var name] location
located var spec init ::= simple spec init | subrange spec init

| enumerated spec init | array spec_init | initialized structure

| single byte string spec | double byte string spec

location ::= 'AT' direct variable
global var list ::= global var name {',' global var name}
string var declaration ::= single byte string var declaration

| double byte string var declaration

single byte string var declaration ::=
varl list ':' single byte string spec
single byte string spec ::=
'"STRING' ['[' integer ']'] [':=' single byte character string]



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 153
EN 61131-3:2002

double byte string var declaration ::=

varl list ':' double byte string spec
double byte string spec ::= \
'"WSTRING' ['[' integer ']'] [':=' double byte character string] 0(0

incompl located var declarations ::= €5
'VAR' ['RETAIN'|'NON RETAIN'] e
incompl located var decl ';' g
{incompl located var decl ';'} a’ga'

"END_VAR'

incompl located var decl ::= variable n mpl location ':' var spec

incompl location ::= 'AT' '%' Q' vx!
var_spec ::= simple specifij
| subrange_ spe01flc :\> enumerated specification
| array spe01 XEX structure type name
| '"STRING' '1'] | '"WSTRING' ['[' integer ']']

SEMANTICS: see 2.4.2. The non-terminal function block type name is defined in B.1.5.2.

B.1.5 Program organization units
B.1.5.1 Functions

PRODUCTION RULES:

function name ::= standard function name | derived function name
standard function name ::= <as defined in 2.5.1.5>
derived function name ::= identifier

function declaration ::=
'"FUNCTION' derived function name ':'
(elementary type name | derived type name)
{ io_var declarations | function var decls }
function body
'"END FUNCTION'

io var declarations ::= input declarations | output declarations |
input output declarations
function var decls ::= 'VAR' ['CONSTANT']
var2 init decl ';' {var2 init decl ';'} 'END VAR'
function body ::= ladder diagram | function block diagram
| instruction list | statement list | <other languages>
var2_init decl ::= varl init decl | array var_ init decl
| structured var init decl | string var declaration

SEMANTICS: see 2.5.1.

NOTE 1 This syntax does not reflect the fact that each function must have at least one input

declaration.

NOTE 2 This syntax does not reflect the fact that edge declarations, function block references and

invocations are not allowed in function bodies.

NOTE 3 Ladder diagrams and function block diagrams are graphically represented as defined in

Clause 4. The non-terminals instruction list and statement list are defined in
B.2.1 and B.3.2, respectively.



Page 154
EN 61131-3:2002

B.1.5.2 Function blocks

PRODUCTION RULES:

function block type name

other var declaratlo
| retentive %
| temp var decls

temp var decls ::=

'VAR _TEMP'
temp var decl ';'

"END VAR'

non retentive var decls
'VAR' 'NON_ RETAIN'
var_init decl ';'

"END_VAR'

function block body ::=

| <other languages>

SEMANTICS: see 2.5.2.

clause 4.

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

| derived function block name (;
standard function block name
derived function block name

function block declaration

'FUNCTION BLOCK' derived functlon e &g*>
{ io_var declarations othe eclarations }

function block body
! ENDfFUNCTIONiBLOCK !

{temp var decl ';'}

{var init decl ';'}

standard function block name

.
::= <as defined in 2.5.2. 3>\)g66

::= identifier ga,

xternal _var declarations | var declarations
arations | non retentive var declarations
incompl located var declarations

sequential function chart | ladder diagram
| function block diagram

| instruction list | statement list

NOTE 1 Ladder diagrams and function block diagrams are graphically represented as defined in

NOTE 2 The non-terminals sequential function chart, instruction list, and
statement list are definedin B.1.6, B.2.1, and B.3.2, respectively.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 155
EN 61131-3:2002

B.1.5.3 Programs
PRODUCTION RULES: \
program type name :: = identifier 0(0
program declaration ::= 6 CJ
'PROGRAM' program type name e
{ io_var declarations | other var declarations
| located var declarations | program acces&ls }
function block body

'"END PROGRAM' \(\\‘\
C

program access decls ::=
'VAR ACCESS' program_acge C ;
{program access_das C‘ }

"END_VAR' ‘\”\Q .

program access _decl\ *:= access name ':' symbolic variable ':'
non_generic type name [direction]

SEMANTICS: see 2.5.3.

B.1.6 Sequential function chart elements

PRODUCTION RULES:
sequential function chart ::= sfc network {sfc network}
sfc network ::= initial step {step | transition | action}

initial step ::=

'"INITIAL STEP' step name ':' {action association ';'} 'END STEP'
step ::= 'STEP' step name ':' {action association ';'} 'END STEP'
step name ::= identifier

action association ::=
action name ' (' [action qualifier] {',' indicator name} ')'

action name ::= identifier

action qualifier ::=

'N' [ 'R'" | 'S"'" | 'P' | timed qualifier ',' action time
timed qualifier ::= 'L' | 'D' | 'sD' | 'DS' | 'SL'
action time ::= duration | variable name
indicator name ::= variable name
transition ::= ‘TRANSITION’
[transition name] [' (' 'PRIORITY' ':=' integer ')']

'FROM' steps 'TO' steps
transition condition
'END TRANSITION'

transition name ::= identifier
steps ::= step name | '(' step name ',' step name {',' step name} ')'
transition condition ::= ':' simple instruction list | ':=' expression

;' | '":' (fbd network | rung)



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 156
EN 61131-3:2002

action ::= 'ACTION' action name ':'
function block body
'END ACTION'

SEMANTICS: see 2.6. The use of function block diagram networks and ladder diagra
denoted by the non-terminals fbd network and rung, respectively, for the expre55| o) tr tlon
conditions shall be as defined in 2.6.3.

NOTE 1 The non-terminals simple instruction list an gn are defined in
B.2.1 and B.3.1, respectively.

NOTE2  The term [transition name] can onlﬁ\\ﬁm the production for transition
when feature 7 of table 41 is supported ulting production is the textual equivalent
of this feature.

B.1.7 Configuration elements . \\

PRODUCTION RULES: ‘(\\\Q )

configuration name ::= identifier
resource type name ::= identifier

configuration declaration ::=

'CONFIGURATION' configuration name
[global var declarations]
(single_ resource declaration

| (resource declaration {resource declaration}))

[access_declarations]
[instance specific_initializations]

'END_ CONFIGURATION'

resource declaration ::=
'RESOURCE' resource name 'ON' resource type name
[global var declarations]
single resource declaration
'END_RESOURCE'

single resource declaration ::=
{task _configuration ';'}
A\l A\l

program_configuration ';
{program configuration ';'}

resource name ::= identifier

access_declarations ::=
'"VAR ACCESS'
access_declaration ';'
{access_declaration ';'}
'"END_VAR'

access_declaration ::= access _name ':' access path ':'
non_generic_type name [direction]

access_path ::= [resource name '.'] direct variable
| [resource name '.'] [program name '.']
{fb_name'.'} symbolic variable

global var reference ::=

[resource name '.'] global var name ['.' structure element name]
access _name ::= identifier
program output reference ::= program name '.' symbolic variable

o\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 157
EN 61131-3:2002

program name ::= identifier

direction ::= 'READ WRITE' | 'READ ONLY'

task configuration ::= 'TASK' task name task initialization (0\
task name := identifier ()

G
task initialization ::= 66
'('" ['SINGLE' ':=' data source ','] \)g
['INTERVAL' ':=' data source ', '] ga’
'PRIORITY' ':=' integer '")'
data source ::= constant | global var_r XA\ce
| program output reference \ ariable

program configuration ::= \
'PROGRAM' [RETAI OYWMRETAIN]
programnamw’ t task name] ':' program type name
[' (" prog con® elements ") ']

prog conf elements ::= prog conf element {',' prog conf element}
prog conf element ::= fb task | prog cnxn
fb task ::= fb name 'WITH' task name

prog _cnxn ::= symbolic variable ':=' prog data source
| symbolic variable '=>' data sink

prog data source ::=
constant | enumerated value | global var reference | direct variable

data sink ::= global var reference | direct variable

instance specific initializations ::=
'VAR CONFIG'
instance specific _init ';'
{instance specific init ';'}
"END VAR'

instance specific init ::=
resource name '.' program name '.' {fb name '.'}
((variable name [location] ':' located var spec init) |
(fb_name ':' function block type name ':='
structure initialization))

SEMANTICS: see 2.7.

NOTE This syntax does not reflect the fact that location assignments are only allowed for

references to variables which are marked by the asterisk notation at type declaration level.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 158
EN 61131-3:2002

B.2 Language IL (Instruction List)

B.2.1 Instructions and operands ((\\
PRODUCTION RULES: S, C,O

instruction list ::= il instruction {il instruction} (25
il instruction ::= [label':'] [ 1l simple operatlcfgh

| i1 expression ‘\

| il jump operation ‘\\

| i1 fb call

| i1 formal funct call

| ilreturnoperator‘\\ ] EOL {EOL}

.

label ::= identifier *L .
il simple operatiorN *:= ( il simple operator [il operand] )

| ( function name [il operand list] )

il expression ::= 1l expr operator '(' [il operand] EOL {EOL}
[simple instr list] ')'

il jump operation ::= il jump operator label

il fb call ::= il call operator fb name [' ('
(EOL {EOL} [ il param 1list ]) | [ il operand list ] ')']

il formal funct call ::= function name '(' EOL {EOL} [il param list] '")'
il operand ::= constant | variable | enumerated value

il operand list ::= il operand {',' 1l operand}

simple instr list ::= il simple instruction {il simple instruction}

il simple instruction ::=

(11 simple operation | il expression | il formal funct call)
EOL {EOL}
il param list ::= {il param instruction} i1l param last instruction
il param instruction ::= (il param assignment | il param out assignment)
', ' EOL {EOL}
il param last instruction ::=
( i1 param assignment | il param out assignment ) EOL {EOL}
il param assignment ::= 1l assign operator ( il operand | ( '(' EOL {EOL}

simple instr list ")' ) )

il param out assignment ::= il assign out operator variable
B.2.2 Operators

PRODUCTION RULES:

il simple operator ::= 'Lb' | 'LDN' | 'ST' | 'STN' | 'NOT' | 'S'
| lRl | 'Sl' | YRl! | !CLK! | !CU‘ | ‘CDI | IPVI
| "IN' | '"PT' | il expr operator

il expr operator ::= 'AND' | '&' | 'OR' | 'XOR' | 'ANDN' | '&N' | 'ORN'
| 'XORN' | 'ADD' | 'SUB' | 'MUL' | 'DIV' | 'MOD' | 'GT' | 'GE' | 'EQ
A\l | ILTI | YLEY | !NE!



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 159
EN 61131-3:2002

il assign operator ::= variable name':='

il assign out operator ::= ['NOT'] variable name'=>"

il call operator ::= 'CAL' | 'CALC' | 'CALCN' (0\
il return operator ::= 'RET' | 'RETC' | 'RETCN' (;S)

.
il jump operator ::= 'JgMP' | 'JMPC' | 'JMPCN' \)ge%

SEMANTICS: see 3.2. This syntax does not reflect the possibility for’t@aL operators as noted in

table 52. \(\\‘\a

B.3 Language ST (Structured Text) N »
B.3.1 Expressions . \\
PRODUCTION RULES: \(\\\Q *

expression ::= xor expression {'OR' xor expression}

XOr_ expression and expression {'XOR' and expression}

and expression = comparison {('&' | 'AND') comparison}
comparison ::= equ_expression { ('=' | '<>') equ expression}
equ_expression ::= add expression {comparison operator add expression}
comparison operator ::= '<' | '>'" | '<="'" | '>=' !
add expression ::= term {add operator term}
add operator ::= '4+' | '-!
term ::= power expression {multiply operator power expression}
multiply operator ::= '*' | '/' | 'MOD'
power expression ::= unary expression {'**' unary expression}
unary expression ::= [unary operator] primary expression
unary operator ::= '-' | 'NOT'
primary expression ::=
constant | enumerated value | variable | ' (' expression ')'
| function name ' (' param assignment {',' param assignment} ')'

SEMANTICS: these definitions have been arranged to show a top-down derivation of expression
structure. The precedence of operations is then implied by a “bottom-up” reading of the definitions of
the various kinds of expressions. Further discussion of the semantics of these definitions is given in
3.3.1. See 2.5.1.1 for details of the semantics of function calls.

B.3.2 Statements
PRODUCTION RULE:

statement list ::= statement ';' {statement ';'}
statement ::= NIL | assignment statement | subprogram control statement
| selection statement | iteration statement

SEMANTICS: see 3.3.2.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 160
EN 61131-3:2002

B.3.2.1 Assignment statements
PRODUCTION RULE:

assignment statement ::= variable ':=' expression (;
SEMANTICS: see 3.3.2.1. ges
B.3.2.2 Subprogram control statements “a/ga

PRODUCTION RULES: \(\\
voration 'RETURN'

Il
Hh

subprogram control statement
fb_invocation ::= fb name | x
l)l

param_ assignment &Qlable name ':='] expression)
| (['NOT' va§€§ e name '=>' variable)

SEMANTICS: see 3.3.2.2.

m_assignment {',' param assignment}]

B.3.2.3 Selection statements
PRODUCTION RULES:

selection statement ::= if statement | case statement

if statement ::=
'IF' expression 'THEN' statement list
{'ELSIF' expression 'THEN' statement list}
['ELSE' statement list]
"END IF'
case_ statement ::=
'CASE' expression 'OF'
case_element
{case element}
['ELSE' statement list]

'"END CASE'
case_element ::= case list ':' statement list
case list ::= case list element {',' case list element}
case list element ::= subrange | signed integer | enumerated value

SEMANTICS: see 3.3.2.3.

B.3.2.4 Iteration statements
PRODUCTION RULES:

iteration statement ::=

for statement | while statement | repeat statement | exit statement
for statement ::=

'FOR' control variable ':=' for list 'DO' statement list 'END FOR'
control variable ::= identifier
for list ::= expression 'TO' expression ['BY' expression]
while statement ::= 'WHILE' expression 'DO' statement list 'END WHILE'

repeat statement ::=
'REPEAT' statement list 'UNTIL' expression 'END REPEAT'

exit statement ::= 'EXIT'
SEMANTICS: see 3.3.2.4.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

The usages of delimiters and keywords in this standard is summarized in tables C.1 a Lnﬂ‘?Z‘Qational
standards organizations can publish tables of translations for the textual po\r'&(gé

Page 161

EN 61131-3:2002

ANNEX C
(normative)

Delimiters and keywords

listed in table C.1 and the keywords listed in table C.2. a

(\@’Q

o

e delimiters

Table C.1 - DelirPib(?‘\
G

Delimiters Subclause Usage
Space 214 As\NRitied in 2.1.4.
N\ 54
(* 21 5\\‘\’\, Begin comment
*) End comment
+ 221 Leading sign of decimal literal
3.3.1 Addition operator
2.21 Leading sign of decimal literal
- 2232 Year-month-day separator
3.3.1 Subtraction, negation operator
411 Horizontal line
# 221 Based number separator
223 Time literal separator
221 Integer/fraction separator
2411 Hierarchical address separator
24.1.2 Structure element separator
2521 Function block structure separator
e or E 2.21 Real exponent delimiter
' 222 Start and end of character string
$ 222 Start of special character in strings
2.2.3 - Time literal delimiters, including:
T#, D, H M S, MS, DATE#, D#, TIME OF DAY#, TOD#, DATE AND TIME#, DT#
2232 Time of day separator
2.3.31 Type name/specification separator
242 Variable/type separator
2.6.2 Step name terminator
2.7 RESOURCE name/type separator
2.7 PROGRAM name/type separator
2.7 Access name/path/type separator
3.21 Instruction label terminator
41.2 Network label terminator
2.3.3.1 Initialization operator
= 271 Input connection operator
3.3.2.1 Assignment operator
O 2.3.3.1 Enumeration list delimiters




Page 162
EN 61131-3:2002

Table C.1 - Delimiters

Delimiters Subclause Usage !Q\
() 2.3.3.1 Subrange delimiters G
[ 2412 Array subscript delimiters 66 .
[ 242 String length delimiters g
O 242 Multiple initialization a'\)

O 3.2.2 Instruction List modifier/oper. r,g
@] 3.3.1 Function argumentsy " ‘\
@] 3.3.1 Subexpression hixz4
@] 3.3.2.2 Function PINNW ist delimiters
2.3.31 3‘1 list separator
2.3.3.2 *Initfa®value separator
2.4.1 \\j Array subscript separator
2.4.2\\ Declared variable separator
, 25.21 Function block initial value separator
2521 Function block input list separator
3.21 Operand list separator
3.31 Function argument list separator
3.3.2.3 CASE value list separator
; 2.3.3.1 Type declaration separator
3.3 Statement separator
2.3.31 Subrange separator
3.3.2.3 CASE range separator
% 2411 Direct representation prefix
=> 271 Output connection operator
3.3.1 - Infix operators, including:
**, NOT, *, /[, MOD, +, -, < > <= >= = <> & AND, XOR, OR
| or ! 411 Vertical lines

Table C.2 - Keywords

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Keywords Subclause

ACTION...END ACTION 26.4.1
ARRAY...OF 2.3.3.1
AT 243
CASE...OF...ELSE...END CASE 3.3.23
CONFIGURATION. ..END CONFIGURATION 271
CONSTANT 243
Data type names 2.3

EN, ENO 251.2,2521a
EXIT 3.3.24
FALSE 2.2.1
F_EDGE 2522
FOR...TO...BY...DO...END FOR 3.3.24




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Table C.2 - Keywords

Page 163
EN 61131-3:2002

Subclause \

Keywords

FUNCTION. ..END FUNCTION

Function names . ge?f)']
FUNCTION BLOCK...END FUNCTION BLOCK ga.\ 2522
Function Block names \ '\(\ - 252

2\

IF...THEN...ELSIF...ELSE...END IF \ G\\“ 3.3.2.3
INITIAL STEP...END STEP R \\N\‘ N 2.6.2
NOT, MDD, AND, XOR, OR n“ \\l 3.3.1
PROGRAM. . .WITH. .. \\ \'Y 271
PROGRAM. . .END PROGRAM ) 253
R_EDGE 2522
READ ONLY, READ WRITE 271
REPEAT...UNTIL...END REPEAT 3.3.2.4
RESOURCE. . .ON. . .END RESOURCE 2.71
RETAIN, NON RETAIN 243
RETURN 3.3.2.2
STEP...END STEP 26.2
STRUCT. . .END_STRUCT 2.3.3.1
TASK 27.2
TRANSITION...FROM...TO...END TRANSITION 2.6.3
TRUE 2.21
TYPE...END TYPE 2.3.3.1
VAR...END VAR 243
VAR INPUT...END VAR 243
VAR OUTPUT...END VAR 243
VAR IN OUT...END VAR 243
VAR TEMP...END VAR 243
VAR EXTERNAL...END VAR 243
VAR ACCESS...END VAR 271
VAR CONFIG...END VAR 271
VAR GLOBAL...END VAR 271
WHILE...DO...END WHILE 3.3.2.4
WITH 2.7.1




Page 164
EN 61131-3:2002

ANNEXD
(normative)
Implementation-dependent parameters ((\

The implementation-dependent parameters defined in this standard, and the primaryé N8 clause

for each, are listed in table D.1. \)g

NOTE Other implementation-dependent parameters such as,% curacy, precision and
repeatability of timing and execution control featurn@: haee significant effects on the
i

portability of programs but are beyond the sc \ part of IEC 61131.

.

Table D.1 - Imelf\ -dependent parameters
Sublause 0“\ ! Parameters
21.2 Maximun\| ngth‘of identifiers
21.5 Maximum comment length
21.6 Syntax and semantics of pragmas
222 Syntax and semantics for the use of the double-quote character when a

particular implementation supports feature 4 but not feature 2 of table 5.

2.31 Range of values and precision of representation for variables of type TIME,
DATE, TIME OF DAY and DATE AND TIME

Precision of representation of seconds in types TIME, TIME OF DAY and
DATE AND TIME

2.3.3.1 Maximum number of enumerated values
Maximum number of array subscripts
Maximum array size

Maximum number of structure elements
Maximum structure size

Maximum range of subscript values

Maximum number of levels of nested structures

23.3.2 Default maximum length of STRING and WSTRING variables
Maximum allowed length of STRING and WSTRING variables
2411 Maximum number of hierarchical levels
Logical or physical mapping
242 Initialization of system inputs
243 Maximum number of variables per declaration

Effect of using AT qualifier in declaration of function block instances
Warm start behavior if variable is declared as neither RETAIN nor NON RETAIN

2.5 Information to determine execution times of program organization units
251.2 Values of outputs when ENO is FALSE
2513 Maximum number of function specifications
2515 Maximum number of inputs of extensible functions
25151 Effects of type conversions on accuracy
Error conditions during type conversions
25152 Accuracy of numerical functions
25156 Effects of type conversions between time data types and other data types not

defined in table 30

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Table D.1 - Implementation-dependent parameters

Sublause Parameters
252 Maximum number of function block specifications and |nstant|at|ons
2521a Function block input variable assignment when EN is FALSE e:) ’
25233 Pymin, Pvmax of counters (\6.\)
25234 Effect of a change in the value of a PT de{ﬂa:a t‘lFf{ing operation
253 Program size limitations \ W
2.6.2 Precision of step ela w
Maximum number, pi per SFC
2.6.3 Maximu @df‘transnmns per SFC and per step
264.2 Maximuﬁ?nbér of action blocks per step
26.4.5 Access to the functional equivalent of the Q or A outputs
26.5 Transition clearing time
Maximum width of diverge/converge constructs
2.71 Contents of RESOURCE libraries
2.7.1 Effect of using READ WRITE access to function block outputs
272 Maximum number of tasks
Task interval resolution
3.3.1 Maximum length of expressions
3.3.2 Maximum length of statements
3.3.23 Maximum number of CASE selections
3.3.24 Value of control variable upon termination of FOR loop
411 Restrictions on network topology
4.1.3 Evaluation order of feedback loops

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 165

EN 61131-3:2002

Jo



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 166

EN 61131-3:2002

ANNEX E
(normative)
Error conditions

The error conditions defined in this standard, and the primary reference clause for each, arcl’ m\
table E.1. These errors may be detected during preparation of the program for ex n uring
execution of the program. The manufacturer shall specify the disposition of the é ccording to
the provisions of subclause 1.5.1 of this part of IEC 61131. a g

. a’
Table E.1 - Error co:lv\\l(s\

—
Subclause ‘\‘\f.rr\'\’conditions

215 Nested comr e\l@q\’
)

2.3.3.1 A@fb\W@eﬂ merated value

A"l )
2.3.31 Va\lé of a variable exceeds the specified subrange
2411 Missing configuration of an incomplete address specification ("*" notation)
24.3 Attempt by a program organization unit to modify a variable which has been

declared CONSTANT

243 Declaration of a variable as VAR_GLOBAL CONSTANT in a containing
element having a contained element in which the same variable is declared
VAR_EXTERNAL without the CONSTANT qualifier.

2.5.1 Improper use of directly represented or external variables in functions
2511 A VAR IN OUT variable is not “properly mapped”
2511 Ambiguous value caused by a VAR_IN OUT connection
2.5.1.51 Type conversion errors
25152 Numerical result exceeds range for data type
Division by zero
25153 N input is less than zero in a bit-shift function
25154 Mixed input data types to a selection function

Selector (K) out of range for MUX function

25155 Invalid character position specified
Result exceeds maximum string length
ANY INT inputis less than zero in a string function

2.5.1.5.6 Result exceeds range for data type

25.2.2 No value specified for a function block instance used as input variable

25.2.2 No value specified for an in-out variable

2.6.2 Zero or more than one initial steps in SFC network
User program attempts to modify step state or time

2.6.3 Side effects in evaluation of transition condition

26.4.5 Action control contention error

2.6.5 Simultaneously true, non-prioritized transitions in a selection divergence
Unsafe or unreachable SFC

2.71 Data type conflict in VAR ACCESS

2.7.2 A task fails to be scheduled or to meet its execution deadline




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Table E.1 - Error conditions

Page 167
EN 61131-3:2002

Subclause Error conditions E| \

3.2.2 Numerical result exceeds range for data type CJO\
Current result and operand not of same data type

3.3.1 Division by zero
Numerical result exceeds range for data type a.\)
Invalid data type for operation

3.3.21 Return from function without vaisxae\\‘;ned

3.3.24 Iteration fails to termlrﬁ ‘N

4.1.1 Same |dent|f|r‘r\)sN§s connector label and element name

41.3

UW teedback variable



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 168

EN 61131-3:2002

ANNEX F
(informative)

Examples 0(’(\\

F.1 Function WEIGH 6 ‘CJ
Example function WEIGH provides the functions of BCD-to-binary conver: ross-we|ght input
from a scale, the binary integer subtraction of a tare weight which has @ewously converted and

stored in the memory of the programmable controller, and t of the resulting net weight
back to BCD form, for example, for an output display. T %ut is used to indicate that the scale
is ready to perform the weighing operation.

e command exists (for example, from an operator

The “ENO” output indicates that an
ton for the weight to be read, and each function has a correct

pushbutton), the scale is in pro
result. K{,@

A textual form of the declarahon of this function is:

FUNCTION WEIGH : WORD (* BCD encoded *)
VAR INPUT (* "EN" input is used to indicate "scale ready" *)
weigh command : BOOL;

gross_weight : WORD ; (* BCD encoded *)
tare weight : INT ;
END VAR
(* Function Body *)
END FUNCTION (* Implicit "ENO" *)

The body of function WEIGH in the IL language is:

LD weigh command
JMPC WEIGH NOW
ST ENO (* No weighing, 0 to "ENO" *)
RET
WEIGH NOW: LD gross_weight
BCD_TO_INT
SUB tare weight
INT TO BCD (* Return evaluated weight *)
ST WEIGH

The body of function WEIGH in the ST language is:

IF weigh command THEN

WEIGH := INT TO BCD (BCD TO INT(gross weight) - tare weight);

END IF ;




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-

An equivalent graphical declaration of function WEIGH is:

BOOL---|EN ENO | ---BOOL 66 .
BOOL---|weigh command | =—==WORD \)g

WORD---|gross_weight | a
INT----|tare weight | a;g
10

D l\\‘\‘ —

\
1 BeD xR Y- | INT_ | |
| weigh command | TO@, | TO BCD | ENO |
e B Rttt NOI——!EN ENOI———\EN ENO|-=--=( )-———-- +
| \ \
| grossiwelght——l |——! |———\ | -——WEIGH

Fo— + Fo———— +
| BCD |  4——————- + | INT_ |
| TO INT | | SUB | | TO BCD |
weigh command---|EN ENO|---]EN ENO|---]EN ENO | ---ENO
gross_weight----| | === | === | ——WEIGH
Fo— + | | Fo———— +
tare weight-------------—-——- | \
Fo————— +

F.2 Function block CMD_MONITOR

Example function block CMD_MONITOR illustrates the control of an operative unit which is capable of
responding to a Boolean command (the CMD output) and returning a Boolean feedback signal (the
FDBK input) indicating successful completion of the commanded action. The function block provides
for manual control via the MAN_CMD input, or automated control via the AUTO_CMD input,
depending on the state of the AUTO_MODE input (0 or 1 respectively). Verification of the MAN_CMD
input is provided via the MAN_CMD_CHK input, which must be 0 in order to enable the MAN_CMD
input.

If confirmation of command completion is not received on the FDBK input within a predetermined time
specified by the T cMD MAX input, the command is cancelled and an alarm condition is signalled via
the ALRM output. The alarm condition may be cancelled by the ACK (acknowledge) input, enabling
further operation of the command cycle.

Page 169
3:2002



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 170
EN 61131-3:2002

A textual form of the declaration of function block CMD MONITOR is:

VAR _INPUT AUTO CMD
AUTO MODE

MAN_CMD

MAN CMD CHK

T CMD MAX

FDBK

ACK
END VAR

ALRM FF
END VAR

END FUNCTION BLOCK

FUNCTION BLOCK CMD MONITOR

BOOL
BOOL
BOOL
BOOL
TIME
BOOL

BOOL

VAR OUTPUT CMD : BOOL ;
ALRM : BOOL

‘e

(*

; (* Automated command *)
; (* AUTO CMD enable *)
; (* Manual Command *)
; (* Negated MAN CMD to deboun
; (* Max time from CMD to
; (* Confirmation of
by operatiwv &

; (* Acknowl ncel ALRM *)

to operative unit *)

END VAR \
VAR CMD TMR : ')S\‘\, (* CMD-to-FDBK timer *)

Note over-riding S input: *)

tlon

) CMD MAX expired without FDBK *)

(* Command must be cancelled before

(* Function Block Body *)

"ACK" can cancel alarm *)

An equivalent graphical declaration is:

BOOL--- | AUTO_CMD CMD | -—-BOOL
BOOL---|AUTO MODE ALRM|---BOOL
BOOL---|MAN_ CMD |
BOOL---|MAN CMD CHK
TIME---|T_ CMD MAX
BOOL--- | FDBK
BOOL--- | ACK

CMD MONITOR |

The body of function block CMD MONITOR in the ST language is:

CMD := AUTO CMD & AUTO MODE

OR MAN CMD & NOT MAN CMD CHK & NOT AUTO MODE
CMD TMR (IN := CMD, PT := T CMD MAX);
ALRM FF (S1 := CMD TMR.Q & NOT FDBK, R := ACK);
ALRM := ALRM FF.Ql;

’




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

The body of function block CMD MONITOR in the IL language is:

Page 171
EN 61131-3:2002

LD T CMD MAX

ST CMD TMR.PT (* Store an input to the
LD AUTO_CMD

AND AUTO_ MODE

OR ( MAN CMD

ANDN AUTO_ MODE

ANDN MAN CMD CHK

.
) N
: \

CMD *
W\ A
IN CMDT&“\, (* Invoke the TON FB *)

TON FB *)

00«\\

LD CMD_TMR.Q

ANDN FDBK

ST ALRM FF.S1 (* Store an input to the SR FB *)

LD ACK

R ALRM FF (* Invoke the SR FB ¥*)

LD ALRM FF.Q1

ST ALRM

The body of function block CMD MONITOR in the LD language is:

| \
| AUTO MODE AUTO CMD CMD |
t==| | mmmm s e +--—( ) -+
| | \
| AUTO MODE MAN CMD MAN CMD CHECK | \
+== /| === I I B + \
| \
| ACK ALRM |
Rl I (R) ———+
| CMD TMR |
| +-m—— - + \
| CMD | TON | FDBK ALRM
+==| | -mmm- [IN Qf------ |/ ===m (8) ——-+
| T CMD MAX--|PT ET| \
| +-m——- + \
| \




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 172

EN 61131-3:2002

The body of function block CMD MONITOR in the FBD language is:

o

+-+ +-——1
AUTO CMD------ | & ====|>=1|——4—mmmm o CMD
AUTO MODE-—+--| | +--| |
| 4=+ | ===+ ]
| ! ! 66
| +=+ ] | CMD TMR AL@Q
+-0l&| | I + <:§R +
MAN CMD------- | |-+ | | TON | . a’\ |
MAN CMD CHK--0O| | +--|IN Q——““———Sl Q1|--ALRM
+-+ \(:} -0 | +=-IR |
T CMD MAX-——=—=———————————————— A T o +
+o |
FDBK-—-———mmmmmm et M + |
ACK-—=mmm————m V\_‘ ————————————————————————— +
AN

F.3 Function block FWD_REV_MON

Example function block FWD REV_MON illustrates the control of an operative unit capable of two-way
positioning action, for example, a motor-operated valve. Both automated and manual control modes
are possible, with alarm capabilities provided for each direction of motion, as described for function
block CMD_MONITOR above. In addition, contention between forward and reverse commands causes
the cancellation of both commands and signalling of an alarm condition. The Boolean OR of all alarm

conditions is made available as a KLAXON output for operator signaling.

A graphical declaration of this function block is:

R ittt e +
| FWD REV MON {
BOOL--- | AUTO KLAXON | -—-BOOL
BOOL---| ACK FWD REV ALRM|---BOOL
BOOL--- | AUTO FWD FWD CMD | ---BOOL
BOOL--- |MAN FWD FWD ALRM|---BOOL

BOOL---|MAN FWD CHK {
TIME---|T_ FWD MAX {
BOOL--- | FWD FDBK {
BOOL--- | AUTO REV REV_CMD | ---BOOL
BOOL--- |MAN REV REV ALRM|---BOOL
BOOL---|MAN REV CHK |
TIME---|T REV MAX {
BOOL--- |REV_FDBK

B ettt +




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

A textual form of the declaration of function block FWD REV MON is:

Page 173

EN 61131-3:2002

FUNCTION BLOCK FWD REV MON
VAR INPUT AUTO : BOOL ; (* Enable automated commands *)

ACK : BOOL ; (* Acknowledge/cancel all alarms *)
AUTO_FWD : BOOL ; (* Automated forward command *) ge
MAN FWD : BOOL ; (* Manual forward command *) a'\)
MAN FWD CHK : BOOL ; (* Negated MAN FWD for deb
T FWD MAX : TIME ; (* Maximum time from FYi C © FWD FDBK *)
FWD_FDBK : BOOL ; (* Confirmation o AEMD completion *)
(* by ope N it *)
AUTO_REV : BOOL ; (* Ayt verse command *)
MAN REV : BOOL ; X reverse command *)
MAN REV_CHK : BOO w dgated MAN REV for debouncing *)
T REV MAX : TI #L Maximum time from REV_CMD to REV_FDBK *)
REV_FDBK : BOOL (* Confirmation of REV_CMD completion ¥*)
END VAR (* by operative unit *)
VAR OUTPUT KLAXON : BOOL ; (* Any alarm active *)
FWD REV_ALRM : BOOL; (* Forward/reverse command conflict *)
FWD _CMD : BOOL ; (* "Forward" command to operative unit *)
FWD ALRM : BOOL ; (* T _FWD MAX expired without FWD FDBK *)
REV_CMD : BOOL ; (* "Reverse" command to operative unit *)
REV_ALRM : BOOL ; (* T _REV MAX expired without REV_FDBK ¥*)
END VAR
VAR FWD MON : CMD MONITOR; (* "Forward" command monitor *)
REV_MON : CMD MONITOR; (* "Reverse" command monitor ¥*)
FWD REV_FF : SR ; (* Forward/Reverse contention latch ¥*)
END VAR

(* Function Block body *)
END FUNCTION BLOCK

1
sl

o

The body of function block FWD REV_MON can be written in the ST language as:

(* Evaluate internal function blocks *)
FWD_ MON (AUTO MODE := AUTO,
ACK := ACK,
AUTO_CMD := AUTO_FWD,
MAN CMD := MAN FWD,
MAN CMD CHK := MAN FWD CHK,
T CMD MAX  := T FWD MAX,
FDBK := FWD FDBK) ;
REV_MON (AUTO MODE := AUTO,
ACK := ACK,
AUTO_CMD := AUTO_REV,
MAN CMD := MAN REV,
MAN CMD CHK := MAN REV CHK,
T CMD MAX  := T REV MAX,
FDBK := REV_FDBK) ;
FWD REV _FF (S1 := FWD MON.CMD & REV _MON.CMD, R := ACK);
(* Transfer data to outputs ¥*)
FWD REV ALRM := FWD REV FF.Ql;
FWD CMD := FWD MON.CMD & NOT FWD REV ALRM;
FWD ALRM := FWD MON.ALRM;
REV_CMD := REV _MON.CMD & NOT FWD REV ALRM;
REV_ALRM := REV_MON.ALRM;
KLAXON := FWD_ALRM OR REV_ALRM OR FWD REV_ ALRM;




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 174

EN 61131-3:2002

The body of function block FWD REV MON in the IL language is:

(* Evaluate internal function blocks *)
CAL FWD_MON (

AUTO_MODE:= AUTO,

ACK:= ACK,

AUTO CMD:= AUTO FWD,

MAN CMD:= MAN FWD,

MAN CMD CHK:= MAN FWD CHK,

T CMD MAX:= T FWD MAX, . af
FDBK:= FWD_FDBK \‘\
) G\(\
CAL REV_MON ( .
AUTO _MODE:= AUTO,
ACK:= ACK, . \\
AUTO CMD:= AUTO EV"\Q .
MAN CMD:= MAN_RES(\
MAN CMD CHK:= MAN REV CHK,
T CMD MAX:= T REV_MAX,

FDBK:= REV_FDBK

CAL FWD REV FF(

S1:=(
LD FWD MON.CMD
AND REV_MON.CMD
),
R:= ACK,
Q => FWD_REV_ALRM (* Contention alarm?*)

)

(* Transfer data to outputs ¥*)

LD FAD_ MON. CMD (* "Forward" command and al arm *)
ANDN FWD REV_ALRM

ST FWD_CVD

LD FWD_MON. ALRM

ST FWD_ALRM

LD REV_MON.CMD  (* "Reverse" command and al arm *)
ANDN FWD REV_ALRM

ST REV_CVD

LD REV_MON. ALRM

ST REV_ALRM

OR FWD_ALRM (* or all alarms *)
OR  FWD _REV_ALRM
ST KLAXON




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

The body of function block FWD REV MON in the FBD language is:

Page 175
EN 61131-3:2002

FWD_MON
o +
| CMD MONITOR |
AUTO FWD--———-————- |AUTO_CMD CMD|--+
AUTO--——---—- +-——-|AUTO MODE ALRM|--|----—-- FWD_ALRM
MAN FWD------ | ---—|MAN CMD [ \)g
MAN FWD CHK--|----|MAN CMD_ CHK I a,
FWD_FDBK-—---- | ---- | FDBK Lo, afg
ACK-—=====——= | —+--|ACK [ \‘\
T FWD MAX----|-|--|T_CMD MAX | G“—+
| | H——mm—m—mm e A e +
! | == |
! \2\ | et |
! \r ——————————— o !
CMD MONITOR | | |
AUTO REV----- | -|--|AUTO_CMD CMD|--+ |
+-|--|AUTO MODE ALRM|-—----—-- REV_ALRM |
MAN REV---———-- | -—|MAN_CMD | |
MAN REV CHK----|--|MAN CMD_ CHK | |
REV_FDBK------- | -— | FDBK | |
+-- | ACK | |
T REV MAX----——=--- |T_CMD MAX | |
o + |
o +
| FWD_REV_FF
| F—————= +
I | SR |
+o-——- ST Ql|-—4————————mmm oo FWD_REV_ALRM
ACK--————-———-- IR [
R + +————- +
=] >=1 |-——--- KLAXON
FWD_MON.ALRM-—-—-——=—-——- | -—=1 |
REV_MON.ALRM-——---——=-—-——- | -—=1 |
| +————- +
|
| +-——+
+-=0| & |=-=——=-- FWD_CMD
FWD_MON.CMD--—=—--——===——- === |
| +———+
|
| +-——+
+-=0| & |--=——--- REV_CMD
REV_MON.CMD——=—--——===———-———- I
+———+

o‘“\




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 176
EN 61131-3:2002

The body of function block FWD REV MON in the LD language is:

| FWD_MON |
| Fomm - + [
| AUTO FWD | CMD MONITOR | |
el B R et |AUTO CMD CMD|
| AUTO | | FWD_ALRM |
e T e |AUTO MODE ALRM|-—----- ()--- \)C
| MAN FWD | | 6’
=] |- IMAN CMD afg
| MAN FWD CHK | \‘\
=] |- IMAN CMD CHK \(‘\ |
| FWD FDBK | |
il B ettt | |
| ACK s ‘ | |
=1 IgS \—'91‘ CK ! |
| | | |
| T FWD MAX---|T CMD MAX | |
| Fomm - + |
| |
| REV_MON |
| Fomm - + |
| AUTO REV | CMD MONITOR | |
=] |- |AUTO CMD CMD|
| AUTO | | REV_ALRM
=] |- |AUTO MODE ALRM|------- ()———+
| MAN REV | | |
=] |- IMAN CMD | |
| MAN REV CHK | | |
=] |- IMAN CMD CHK | |
| REV_FDBK | | |
il B ettt | FDBK | |
| ACK | | |
il B ettt |ACK | |
| | | |
| T REV MAX---|T CMD MAX | |
| Fomm - + |
| |
| ACK FWD REV_ALRM |
- N i (R) ======= +
| |
| FWD MON.CMD  REV MON.CMD FWD REV_ALRM |
- | === [ === (8) =====-- +
| |
| FWD MON.CMD  FWD REV ALRM FWD_CMD |
- | === [/ ===mmmmm - ()=====- +
| |
| REV. MON.CMD  FWD REV ALRM REV_CMD |
A | === A B i ()=====- +
| |
| FWD REV_ALRM KLAXON |
- [ l====== o ()=====- +
| | |
| FWD ALRM | |
- | l====== + |
| | |
| REV_ALRM | |
- [ l====== + |
|




Page 177
EN 61131-3:2002

F.4 Function block STACK INT

This function block provides a stack of up to 128 integers. The usual stack operations of PUSH and
POP are provided by edge-triggered Boolean inputs. An overriding reset (R1) input is provided;
maximum stack depth (N) is determined at the time of resetting. In addition to the top of-

(ouT), Boolean outputs are provided indicating stack empty and stack overflow state

A textual form of the declaration of this function block is: a\)g
FUNCTION BLOCK STACK_ INT g
VAR INPUT PUSH, POP: BOOL R EDGE; (* \Qck operations *)
R1 : BOOL ; dlng reset *)
IN : put to be pushed *)
N \ * Maximum depth after reset *)
END VAR \
VAR _OUTPUT E = ; (* Stack empty ¥*)
OF : BOOL =0 ; (* Stack overflow *)
ouT : INT := 0 ; (* Top of stack data *)
END VAR
VAR STK : ARRAY[0..127] OF INT; (* Internal stack *)
NI : INT :=128 ; (* Storage for N upon reset *)
PTR : INT := -1 ; (* Stack pointer *)
END VAR
(* Function Block body *)
END FUNCTION BLOCK

A graphical declaration of function block STACK INT is:

R ittt +
| STACK INT |
BOOL--->PUSH EMPTY | ---BOOL
BOOL--->POP OFLO | ---BOOL
BOOL---|R1 OUT | ---INT

INT----|IN
INT----|N
fom e +

(* Internal variable declarations *)

VAR STK : ARRAY[0..127] OF INT ; (* Internal Stack *)
NI : INT :=128 ; (* Storage for N upon Reset *)
PTR : INT := -1 ; (* Stack Pointer *)

END VAR

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 178

EN 61131-3:2002

The body of function block STACK INT in the ST language is:

IF EMPTY THEN OUT := O; ' (\
ELSE OUT := STK[PTR]; G‘\\
END IF ; .

ELSIF PUSH & NOT ,OF

IF R1 THEN

OFLO := 0; EMPTY := 1; PTR := -1;

NI := LIMIT (MN:=1,IN:=N,MX:=128); OUT :=
ELSIF POP & NOT EMPTY THEN

OFLO := 0; PTR := PTR-1; EMPTY := P 9@

4007

EMPTY := 0;, PTR+1; OFLO := (PTR = NI);

IF NO ‘;y HEN OUT := IN ; STK[PTR] := IN;

ELQ{&» = 0;

END MF ;

END IF ;
The body of function block STACK INT in the LD language is:

| \
| R1 \
+--—] |-—->>RESET \
| \
| POP EMPTY \
+--| |---1/1--->>POP_STK |
| \
| PUSH OFLO \
+-=| |--=|/|--=->>PUSH_ STK \
| \
| \
oo <RETURN> \
RESET
| Fomm + Fom + Fo—m———— + \
| | MOVE | | MOVE | | LIMIT | OFLO |
o |[EN  ENO|---—-—--—-- |[EN  ENO|---—-——-—-- |[EN ENO|--+---(R)-——+
| 0---| |--0UT -1 —-—| | --PTR 128--|MX | | EMPTY
| pmmmm + pmmmm + N--| IN | +-—=(S)——-+
| 1--|MN | --NI
| Fommmm s + |
e B E e <RETURN>




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

POP_STK:
| e +
| | SUB |
e |[EN  ENOJ
| PTR-—| |
| 1--] |
| e +
|

| +---
| | S
o |EN
| EMPTY |
t-==] = |G

| STK[PTR]---|INO

PUSH_STK:
|

| - +
| | ADD |
e ittt |[EN  ENO|
| PTR-- | |
| 1--| |
| e +
|

| +-—— +

| OFLO | MOVE |

/=== |EN ENO|-
| IN---| (I
| +-—— +

|

| F-——— +
| | SEL |
Fom - |[EN ENO|
| OFLO | |
- === |G |
| IN---|INO |
| 0 ---|IN1 |
| F-——— +

F——————— + \

| 1T | \
_______ |[EN ENO|  EMPTY |
-—PTR—- | l====(8) ===+
0--| \ |
F——————— + \

\

—_—— \

EL | OFLO % ‘;\
ENO|—————————————— \\ +

' .
| -<-QU

il

\

F——————— + |

! EQ \ \
——————— |[EN ENO| OFLO |
-—PTR—- | |-===(S)--—+
NI--| \ \
F——————— + |

\

\

\
___________________________ +
--STK[PTR] \
\

\

\

EMPTY |
———————————————————— (R) ————+
\

---0UT \
\

\

\

Page 179
EN 61131-3:2002




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 180
EN 61131-3:2002

The body of function block STACK INT in the IL language is:

LD
JMPC
LD
ANDN
JMPC
LD
ANDN
JMPC
RET
RESET: LD
ST
LD

LD
ST
LD
LIMIT
ST
JMP
POP_STK: LD
ST
LD
SUB
ST
LT
ST
JMPC
LD
JMP
PUSH_STK: LD
ST
LD
ADD
ST
EQ
ST
JMPC
LD
ST
JMP
ZRO_OUT: LD
SET OUT: ST

o

R1

RESET
POP
EMPTY
POP STK
PUSH
OFLO
PUSH_STK

0

o ||

-1

PTR

1

N, 128
NI
ZRO_OUT
0

OFLO
PTR

1

PTR

0

EMPTY
ZRO_OUT
STK[PTR]
SET OUT
0

EMPTY
PTR

1

PTR

NI

OFLO
ZRO _OUT
IN
STK[PTR]
SET OUT
0

oUT

(* Dispatch on operations *)
(* Don't pop empty stack ¥*) 66 ‘c
(* Don't pysh flgsd stack *)
(* t :'f

.

if no operations active *)

ack reset operations *)

(* Popped stack is not overflowing *)

(* Empty when PTR < 0 *)

(* Pushed stack is not empty *)
(* Overflow when PTR =

NI *)

(* Push IN onto STK *)

(* OUT=0 for EMPTY or OFLO ¥*)




Page 181
EN 61131-3:2002

The body of function block STACK INT in the FBD language is:

R1--+-->>RESET \
| — 0(0
e 0| & | ~—<RETURN> <:}
T e T e ol | (2;55
+--0lal | +=-01 | \)g

POP-———— | |--+-->>POP_STK |-+ ga»

EMPTY--O| | | =+ a’

t=t  Ammmmmm— e O|&|——+——>>PUSH STK ‘\

Rl-——m—mmmmmmmmmmmmmmmm o

PUSH-—————————mmm—mmm o=

OFLO-—=—————=———————————— \\

RESET
S — R + R — +
| = | | = \ = |
1 -=|EN ENO|--—————m——mm |EN ENO|-----—===— |EN ENO|-—+
0 —1| |-—-0UT -1 —-| |-—-PTR  0—-| | -— | -—OFLO
R + R + R — +
o +
T —— + —— +
I = | LIMIT |
+==|EN ENO|-=---mmmmmmmmm |EN ENO|--<RETURN>
1--| | -——EMPTY 128--|MX
b + N--|IN | --NI
1--|MN |
—— +
POP_STK:
S — + R — + S — + S — +
- < | SEL | o=
1--——|EN ENO|-----—- |EN ENO|-----—--- |EN ENO|------ |EN ENO | --<RETURN>
--PTR| | ~—PTR--| | ~—EMPTY-- | G |-+ |
— |0 -] R — [INO | | O-—| | -—OFLO
- + e + | +----]IN1 [ e +
STK[PTR] —=——=———=— === ————m == + RN +
0 + fom o ouT
PUSH_STK
S — + R + S — +
| = | [+ | = \
1--|EN ENO|---—=-—==-- |EN ENO|-----—- |EN ENO|--
0--| | ~~EMPTY 1--| | --PTR-- |G | ~—+--OFLO
ommmee + oo | NI-—-| o
PTR———————————————— N —— + S — +
e e +
| R + | === +
| | = | | SEL |
+---—|EN ENO| +-—-1G e oUT
IN-—4-———- | | -~~STK[PTR] +---———- |INO |
| F———— + | O---|IN1 |
o + R +

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 182
EN 61131-3:2002

F.5 Function block MIX_2_BRIX

Function block MIX 2 BRIX is to control the mixing of two bricks of solid material, brought one at a \

time on a belt, with we|ghed quantities of two liquid components, A and B, as shown in f|gure F.
“Start” (sT) command, which may be manual or automatic, initiates a measurement and m|

beginning with simultaneous weighing and brick transport as follows:

o

- liquid A is weighed up to mark “a” of the weighing unit, then I|qU|d B is @@%p to mark “b”,

followed by filling of the mixer from weighing unit C;

- two bricks are transported by belt into the mixer.

(\6«’
QGlt;r a predetermined time “t1”.

The cycle ends with the mixer rotating and finally {i
the mixer continues while it is emptying.

Rotation of

The scale reading “wWC” is g|vew \r BCD digits, and will be converted to type INT for internal

operations. It is assumed tl‘\ (empty weight) “z” has been previously determined.

bricks

[ ][] feedbelt

belt motor

'\ S ' MT

transit detector

WC If aMII bll

Weighing unit [ l

tipping mixer

[

"Up" limit switch a
SO

motor /

bidirectional \
tipping motor \

-

"Down" limit switch ﬁ \\\

S1

Figure F.1 - Function block MIX_2_BRIX - physical model

IEC 2502/02



The textual form of the declaration of this function block is:

Page 183
EN 61131-3:2002

FUNCTION BLOCK MIX 2 BRIX
VAR INPUT

ST : BOOL ; (* "Start" command *)

d : BOOL ; (* Transit detector *)

S0 : BOOL ; (* "Mixer up" limit switch *)

S1 : BOOL ; (* "Mixer down" limit switch *)
WC : WORD; (* Current scale reading in

z : INT ; (* Tare (empty) welgh -

WA : INT ; (* Desired weig

WB : INT ; (* Desired wgi “f B *)

tl : TIME ; Mixi
END VAR
VAR OUTPUT \\

DONE ,

VA , \(\\ Valve "A" 0 - close, 1 - open ¥*)
VB , (* Valve "B" 0 - close, 1 - open ¥*)
vC , (* Valve "C" 0 - close, 1 - open ¥*)
MT , (* Feed belt motor *)

MR , (* Mixer rotation motor *)

MPO , (* Tipping motor "up" command *)

MP1 BOOL; (* Tipping motor "down" command *)
END VAR

(* Function block body *)
END FUNCTION BLOCK

WOF

G 00«\\

A graphical declaration is:

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

o +
| MIX 2 BRIX |
BOOL---| ST DONE | -—-BOOL
BOOL---|d VA|---BOOL
BOOL--- S0 VB|---BOOL
BOOL---|S1 VC|---BOOL
WORD--- | WC MT | ---BOOL
INT---|z MR | ---BOOL
INT--- | WA MPO | ---BOOL
INT---|WB MP1 | ---BOOL
TIME---|tl |

fmm +




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 184
EN 61131-3:2002

The body of function block MIX 2 BRIX using graphical SFC elements with transition conditions in
the ST language is shown below.

Fom - D +
| |
| t====f====+ fom—t————— + €E>‘
| || START ||---| N | DONE | \)ge
| t====f====+ fom—t————— + a
| | ”
.
| + ST & SO & RC '\ WC) <= z
' S o
| ===4== + X =gt ====t=======
| | |
| fom -1 +—‘—\»\» +————t———1 +———t————1
| | WEIGH A —\' NV VA | | BRICKl |---| S | MT |
| +————t- —— - fo———t———1 +———t————1
| | |
| + BCD _TO INT(WC) >= WA+z +d
| | |
| fom -1 fo——t————+ +o———t———1
| | WEIGH B |---| N | VB | | DROP_1 |
| fom -1 fo——t————+ +————t———1
| | |
| + BCD_TO INT (WC) >= WA+WB+z + NOT d
| | |
| fom -1 fo——t————+ +————t———1
| | FILL |-——=| N | VC | | BRICK2 |
| fom -1 fo——t————+ +————t———1
| | + d
| | +————t———1 +———t————1
| | | DROP 2 |---| R | MT |
| | +————t———1 +———t————1
| | |
| +== + +
| |
| + BCD TO INT(WC) <= z & NOT d
| |
| +-—+-——+ -t
| | MIX |---] S | MR |
| +-—+-——+ -t
| |
| + MIX.T >= tl
| |
| +——t——1 fo——t————- +-———+
| | TIP |---| N | MP1 | S1 |
| +——t——1 fo——t————- +-———+
| |
| + s1
| |
| +-——t—— e +-———+
| | RAISE |---| R | MR |
| +-——t—— e +-———+
| +50 | N | MPO | SO |
| | e +-———+
Fomm - mmmmm +

00«\\




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-

The body of function block MIX 2 BRIX in a textual SFC representation using ST language elements
is:

TRANSITION FROM START TO (WEIGH A, BRICKI) 6
:= ST & SO & BCD TO INT(WC) <= z; ge

END TRANSITION

STEP WEIGH A: VA(N); END STEP @@ g

TRANSITION FROM WEIGH A TO WEIGH B := ‘i >= WA+z ;
END TRANSITION

STEP WEIGH B: VB(N); END ST
TRANSITION FROM WEIGH

END TRANSITION

STEP FILL: VC X@ STEP
STEP BRICKl: MT(S); END STEP

TRANSITION FROM BRICKl TO DROP 1 := d ; END TRANSITION

:= BCD _TO_ INT(WC) >= WA+WB+z ;

STEP DROP 1: END STEP
TRANSITION FROM DROP 1 TO BRICK2 := NOT d ; END TRANSITION

STEP BRICK2: END STEP
TRANSITION FROM BRICK2 TO DROP 2 := d ; END TRANSITION

STEP DROP 1: MT(R); END STEP

TRANSITION FROM (FILL,DROP 2) TO MIX
:= BCD TO INT(WC) <= z & NOT d ;
END TRANSITION

STEP MIX: MR(S); END STEP
TRANSITION FROM MIX TO TIP := MIX.T >= tl ; END TRANSITION

STEP TIP: MP1 (N); END STEP
TRANSITION FROM TIP TO RAISE := S1 ; END TRANSITION

STEP RAISE: MR(R); MPO(N); END STEP
TRANSITION FROM RAISE TO START := SO ; END TRANSITION

F.6 Analog signal processing

The purpose of this portion of of this annex is to illustrate the application of the programming
languages defined in this standard to accomplish the basic measurement and control functions of
process-computer aided automation. The blocks shown below are not restricted to analog signals;
they may be used to process any variables of the appropriate types. Similarly, other functions and
function blocks defined in this standard (for example, mathematical functions) can be used for the
processing of variables which may appear as analog signals at the programmable controller's 1/0
terminals.

These function blocks can be typed with respect to the input and output variables shown below as
REAL (for example, XIN, XOUT) by appending the appropriate data type name, for example,
LAGl LREAL. The default data type for these variables is REAL.

These examples are given for illustrative purposes only. Manufacturers may have varying
implementations of analog signal processing elements. The inclusion of these examples is not
intended to preclude the standardization of such elements by the appropriate standards bodies.

Page 185
3:2002

INITIAL STEP START: DONE (N); END STEP 0(0\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 186
EN 61131-3:2002

F.6.1 Function block LAG1

This function

block implements a first-order lag filter.

| LAG1 |
BOOL---|RUN |
REAL---|XIN XOUTI———REAL
TIME---|TAU
TIME———ICYCLE

Q

FUNCTION BLOCK LAG1

VAR INPUT

RUN BOOL \Q = run, 0 = reset *)

XIN RE@‘, (* Input variable *)

TAU TI ; (* Filter time constant *)

CYCLE TIME ; (* Sampling time interval *)
END VAR
VAR OUTPUT XOUT REAL ; END VAR (* Filtered output *)
VAR K REAL ; (* Smoothing constant, 0.0<=K<1.0 *)
END VAR
IF RUN THEN XOUT := XOUT + K * (XIN - XOUT) ;
ELSE XOUT := XIN ;

K := TIME TO REAL(CYCLE) / TIME TO REAL(CYCLE + TAU)

END IF ;

END FUNCTION BLOCK

’

F.6.2 Function block DELAY

This function

block implements an N-sample delay.

fom +
| DELAY |
BOOL--- | RUN |
REAL--- | XIN XOUT | -——REAL
INT----|N |
fom +

FUNCTION BLOCK DELAY

(* N-sample delay *)

VAR INPUT

RUN BOOL ; (* 1 = run, 0 = reset *)

XIN REAL ;

N : INT ; (* 0 <= N < 128 or manufacturer- *)
END VAR (* specified maximum value *)
VAR OUTPUT XOUT REAL; END VAR (* Delayed output *)
VAR X ARRAY [0..127] (* N-Element queue *)

OF REAL; (* with FIFO discipline ¥*)
I, IXIN, IXOUT INT := 0;
END VAR
IF RUN THEN IXIN := MOD(IXIN + 1, 128) ; X[IXIN] := XIN ;
IXOUT := MOD(IXOUT + 1, 128) ; XOUT := X[IXOUT];
ELSE XOUT := XIN ; IXIN := N ; IXOUT := 0;
FOR I := 0 TO N DO X[I] := XIN; END FOR;
END IF ;

END FUNCTION BLOCK




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

F.6.3 Function block AVERAGE

This function block implements a running average over N samples.

Page 187
EN 61131-3:2002

| AVERAGE |
BOOL---|RUN |
REAL---|XIN XOUT | -—-REAL

INT----|N | a’g

=
O

00«\\

\\§
FUNCTION BLOCK AVERAGE d\\

VAR _INPUT .
RUN : BOOL ; (* , 0 = reset *)
XIN : REAL ; \r ut variable *)

N . INT “\( 0 <= N < 128 or manufacturer-
END VAR ‘;> (* specified maximum value
VAR OUTPU ouT REAL ; END VAR (* Averaged output
VAR SUM REAL := 0.0; (* Running sum ¥*)

FIFO : DELAY ; (* N-Element FIFO *)
END VAR
SUM := SUM - FIFO.XOUT ;
FIFO (RUN := RUN , XIN := XIN, N := N) ;
SUM := SUM + FIFO.XOUT ;
IF RUN THEN XOUT := SUM/N ;
ELSE SUM := N*XIN ; XOUT := XIN ;
END IF ;

END FUNCTION BLOCK

*)
*)

*)

F.6.4 Function block INTEGRAL

This function block implements integration over time.

fommm - +
| INTEGRAL |
BOOL--- | RUN Q|---BOOL

BOOL---|R1 [
REAL---| XIN XOUT | ---REAL
REAL---| X0 [
TIME---|CYCLE [

fommm - +

FUNCTION BLOCK INTEGRAL

END _IF ;
END FUNCTION BLOCK

VAR _INPUT
RUN : BOOL ; (* 1 = integrate, 0 = hold *)
R1 : BOOL ; (* Overriding reset *)
XIN : REAL ; (* Input variable *)
X0 : REAL ; (* Initial value *)
CYCLE : TIME ; (* Sampling period *)

END VAR

VAR _OUTPUT
Q : BOOL ; (* NOT R1 *)
XOUT : REAL ; (* Integrated output *)

END VAR

Q := NOT R1 ;

IF R1 THEN XOUT := X0 ;

ELSIF RUN THEN XOUT := XOUT + XIN * TIME TO REAL(CYCLE) ;




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 188

EN 61131-3:2002

F.6.5 Function block DERIVATIVE

This function block implements differentiation with respect to time.

fomm e +
| DERIVATIVE |

BOOL--- | RUN

REAL---|XIN XOUT | ---REAL

TIME---|CYCLE [

VAR X1, X2, X3 : REAL ; END VAR
IF RUN THEN

XOUT := (3.0 * (XIN - X3) + X1 - X2)
/ (10.0 * TIME TO REAL(CYCLE)) ;
X3 = X2 ; X2 := X1 ; X1 := XIN ;
ELSE XOUT := 0.0; X1 := XIN ; X2 := XIN ; X3 :=
END IF ;

END FUNCTION BLOCK

fomm + 0, F ga"(gs
FUNCTION BLOCK DERIVATIVE ‘\\

VAR _INPUT .
RUN : BOOL ; < reset
XIN : REAL ; .;\\ ™ Tnput to be differentiated
CYCLE : T &Q‘ (* Sampling period
END VAR \{{
VAR _OUTPUT
XOUT : REAL ; (* Differentiated output
END VAR

XIN ;

F.6.6 Function block HYSTERESIS

This function block implements Boolean hysteresis on the difference of REAL inputs.

e +
| HYSTERESIS |
REAL---|XIN1 Q|---BOOL

REAL---|XIN2
REAL---|EPS [
fommm e +

FUNCTION BLOCK HYSTERESIS
(* Boolean hysteresis on difference *)

END FUNCTION BLOCK

(* of REAL inputs, XINl - XIN2 *)
VAR INPUT XIN1, XIN2, EPS : REAL; END VAR
VAR OUTPUT Q : BOOL := 0; END VAR
IF Q THEN IF XINl < (XIN2 - EPS) THEN Q := 0; END IF ;
ELSTF XIN1 > (XIN2 + EPS) THEN Q := 1 ;
END_IF ;




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

F.6.7 Function block LIMITS ALARM

This function block implements a high/low limit alarm with hysteresis on both outputs.

Page 189
EN 61131-3:2002

o5

o

fom +
LIMITS |
ALARM |
(* High limit *) REAL--|H QH|--BOOL (* ngh g
(* Variable value *) REAL--|X Q| --BOOL !&3
(* Lower limit *) REAL--|L QLI——BQ fo lag
(* Hysteresis *) REAL——IEPS \(\
_____ ;i_
(* Function bl in FBD language *)
I\ HIGH ALARM
____________ +
“\\Q HYSTERESIS |
Xmmmmmmmm e N +——\XIN1 Ql=—t-———mm—m - o):
t-——t I [
Homm—mmmmmm | = |————m- | XTN2 |
=== | [ [
| t-——t [ [
fom e |EPS | A= +
+-—=+ | | + 4= >=1 |
EPS---| / |--+ | | |-—-0
2.0---| I | LOW_ALARM +=—| |
==+ | | + | 4= +
| +-——+ | | HYSTERESIS | |
L——m—mmmmm - | + |————-—- | XIN1 Ql-—F-———m——m - oL
| | | [ \
+———] | +-— | XIN2
| t-——t \ \
tmmmmmm o |EPS \
R +

F.6.8 Structure ANALOG_LIMITS

This data type implements the declarations of parameters for analog signal monitoring.

TYPE ANALOG LIMITS
STRUCT
HS : REAL ;
HM : REAL ;
HA : REAL ;
HW : REAL ;
NV : REAL ;
EPS : REAL ;
LW : REAL ;
LA : REAL ;
LM : REAL ;
LS : REAL ;
END_STRUCT ;
END TYPE

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

High
High
High
High
Nomi
Hyst
Low
Low
Low
Low

end of signal range *)
end of measurement range *)
alarm threshold *)
warning threshold *)
nal value *)
eresis *)
warning threshold *)
alarm threshold *)
end of measurement range *)
end of signal range *)




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 190
EN 61131-3:2002

F.6.9 Function block ANALOG_MONITOR

This function block implements analog signal monitoring.

| ANALOG |
| MONITOR |
REAL--|X SE|--BOOL
ANALOG LIMITS--|L ME | --BOOL
| ALRM | --BOOL
| WARN | --BOOL
| QH|--

(* Signal erro g
(* Measurem@
*

“ Slgnal high *)

(* Function block body

l\\@l\énguage -

)

‘\%@ MEAS ALARM
B\ e :

| LIMITS ALARM | LIMITS ALARM |
L.HS---|H QI———SE L.HM---|H Q| ---ME
X=——== I X | X=————- I X \
L.LS-—-1IL | L.ILM---|L |
EPS----|EPS | EPS----|EPS \

Fom + e et +

ALARM WARNING

Fom + e +

| LIMITS ALARM | | LIMITS ALARM |
L.HA---|H Q|---ALRM L.HW---|H Q| -—-WARN
X=———= I X | X---1X \
L.LA---|L | L.LW---|L \
EPS----|EPS | EPS---|EPS \

Fom + e +

F————— +

SIGNAL ALARM.QH---| >= 1 |---QH

MEAS ALARM.QH----- | \

ALARM.QH--—-—-——-- | \

WARNING.QH--—--—-- | \

F————— +




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

F.6.10 Function block PID

Page 191

EN 61131-3:2002

This function block implements Proportional + Integral + Derivative control action. The functional
derived by functional composition of previously declared function blocks.

Fomm - +
| PID |

BOOL---| AUTO

REAL---|PV XOUT | ---REA ’g

REAL---|SP \

REAL---|X0 0‘\

REAL---|KP

REAL——

—ICYCLE

\\\ ........... ;

WO’

FUNCTION BLOCK PID

VAR _INPUT
AUTO : BOOL ; (* 0 — manual , 1 - automatic *)
PV : REAL ; (* Process variable *)
SP : REAL ; (* Set point *)
X0 : REAL ; (* Manual output adjustment - ¥*)
(* Typically from transfer station *)
KP : REAL ; (* Proportionality constant *)
TR : REAL ; (* Reset time *)
TD : REAL ; (* Derivative time constant *)
CYCLE : TIME ; (* Sampling period ¥*)
END VAR
VAR OUTPUT XOUT : REAL; END VAR
VAR ERROR : REAL ; (* PV - SP ¥*)
ITERM : INTEGRAL ; (* FB for integral term ¥*)
DTERM : DERIVATIVE ; (* FB for derivative term *)
END VAR
ERROR := PV - SP ;
(*** Adjust ITERM so that XOUT := X0 when AUTO = 0 ***)
ITERM (RUN := AUTO, Rl := NOT AUTO, XIN := ERROR,
X0 := TR * (X0 - ERROR), CYCLE := CYCLE) ;
DTERM (RUN := AUTO, XIN := ERROR, CYCLE := CYCLE) ;
XOUT := KP * (ERROR + ITERM.XOUT/TR + DTERM.XOUT*TD) ;

END FUNCTION BLOCK

el



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 192
EN 61131-3:2002

F.6.11 Function block DIFFEQ

This function block implements a general difference equation.

e ettt +
| DIFFEQ | 66
BOOL~--~- | RUN | \)g
REAL---|XIN XOUT | ---REAL a.
ARRAY[1..127] OF REAL---|A a’g
INT----|M \(\
ARRAY[0..127] OF REAL---|B | ‘\
INT----|N
s B
FUNCTION BLOCK \‘
VAR _INPUT iw
RUN : BOO (* 1 = run, 0 = reset *)
XIN REAL ;
A : ARRAY[1..127] OF REAL ; (* Input coefficients *)
M : INT ; (* Length of input history *)
B : ARRAY[0..127] OF REAL ; (* Output coefficients *)
N : INT ; (* Length of output history *)
END VAR
VAR _OUTPUT XOUT REAL := 0.0 ; END VAR
VAR (* NOTE : Manufacturer may specify other array sizes *)
XI : ARRAY [0..127] OF REAL ; (* Input history *)
XO : ARRAY [0..127] OF REAL ; (* Output history ¥*)
I : INT ;
END VAR
XO[0] := XOUT ; XI[O] := XIN ;
XOUT := B[0] * XIN ;
IF RUN THEN
FOR I := M TO 1 BY -1 DO
XOUT := XOUT + A[I] * XO[I] ; XO[I] := XO[I-1];
END_FOR;
FOR I := N TO 1 BY -1 DO
XOUT := XOUT + B[I] * XI[I] ; XI[I] := XI[I-1];
END_FOR;
ELSE
FOR I := 1 TO M DO XO[I] := 0.0; END FOR;
FOR I := 1 TO N DO XI[I] := 0.0; END FOR;
END IF ;
END FUNCTION BLOCK




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

F.6.12 Function block RAMP

This function block implements a time-based ramp.

Page 193
EN 61131-3:2002

Fomm - +
| RAMP [

BOOL--- | RUN BUSY | ---BOOL

REAL---| X0 XOUT | ---REAL a.

REAL---|X1 | . a’g

TIME---|TR \(\

S '@0«\\
S

|
TIME---|CYCLE | G
TR +‘
2 t\ﬁN
FUNCTION_BLOCK RAMP \\ \‘

VAR _INPUT

X0,X1 : REML ;

TR : TIME ; (* Ramp duration *)
CYCLE : TIME ; (* Sampling period ¥*)
END VAR
VAR _OUTPUT
BUSY : BOOL ; (* BUSY = 1 during ramping period ¥*)
XOUT : REAL := 0.0 ;
END VAR
VAR XI : REAL ; (* Initial value *)
T : TIME := T#0s; (* Elapsed time of ramp *)
END VAR

BUSY := RUN ;
IF RUN THEN

IF T >= TR THEN BUSY := 0 ; XOUT := X1 ;
ELSE XOUT := XI + (X1-XI) * TIME TO REAL(T)
/ TIME_TO REAL(TR) ;
T := T + CYCLE ;
END IF ;
ELSE XOUT := X0 ; XI := X0 ; T := t#0s ;

END IF ;
END FUNCTION BLOCK

.
W
RUN : BOO“\' (* 0 - track X0, 1 - ramp to/track X1 *)




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 194
EN 61131-3:2002

F.6.13 Function block TRANSFER

transfer.

This function block implements a manual transfer station with bumpless
fomm - +
| TRANSFER |
BOOL---| AUTO |
REAL---| XIN XOUT | ---REAL
REAL---|FAST RATE | a’
REAL---|SLOW_RATE | ‘\\(\
BOOL--- | FAST_UP 0

\\\’Q \—\| CYCLE |

g’b«

FUNCTION BLOCK TRANSFER

IF NOT AUTO THEN

END FUNCTION BLOCK

VAR _INPUT
AUTO BOOL ; (* 1 - track X0, 0 - ramp or hold *)
XIN REAL ; (* Typically from PID Function Block *)
FAST RATE, SLOW RATE REAL ; (* Up/down ramp slopes *)
FAST UP, SLOW UP, (* Typically pushbuttons *)
FAST DOWN, SLOW_ DOWN BOOL;
CYCLE TIME ; (* Sampling period *)

END_ VAR

VAR _OUTPUT XOUT REAL ; END VAR

VAR XFER RAMP INTEGRAL ;

RAMP RATE REAL ;
END_ VAR
RAMP RATE := 0.0 ;

IF FAST UP THEN RAMP RATE := FAST RATE; END IF;
IF SLOW UP THEN RAMP RATE := RAMP RATE + SLOW RATE; END IF;
IF FAST DOWN THEN RAMP RATE := RAMP RATE - FAST RATE; END IF;
IF SLOW DOWN THEN RAMP RATE := RAMP RATE - SLOW RATE; END IF;
END_IF ;
XFER RAMP (RUN := 1, CYCLE := CYCLE, Rl := AUTO,
XIN := RAMP RATE, X0 := XIN) ;
XOUT := XFER RAMP.XOUT;

F.7 Program GRAVEL

A control system is to be used to measure an operator-specified amount of gravel from a silo into an
intermediate bin, and to convey the gravel after measurement from the bin into a truck.

The quantity of gravel to be transferred is specified via a thumbwheel with a range of 0 to 99 units.

The amount of gravel in the bin is indicated on a digital display.

For safety reasons, visual and audible alarms must be raised immediately when the silo is empty. The

signalling functions are to be implemented in the control program.

A graphic representation of the control problem is shown in figure F.2, while the variable declarations

for the control program are given in figure F.3.



Page 195
EN 61131-3:2002

As shown in figure F.4, the operation of the system consists of a number of major states, beginning
with filling of the bin upon command from the FILL push button. After the bin is filled, the truck
loading sequence begins upon command by the LOAD pushbutton when a truck is present on the
ramp. Loading consists of a “run-in” period for starting the conveyor, followed by dumping of th \
contents onto the conveyor. After the bin has emptied, the conveyor “runs out” for a pred

nd re-

initialized if the truck leaves the ramp or if the automatic control is stopped by th

button.

Figure F.5 shows the OFF/ON sequence of automatic control st
display blinking pulses and conveyor motor gating when th

Bin level monitoring, operator interface and display f ct|

A textual version of the body of progr

SFC elements.

An example configuration fo

time to assure that all gravel has been loaded to the truck. The loading sequence ISé

%é %@II as the generation of

re deflned in figure F.6.

L is given in figure F.7, using the ST language with

ogram GRAVEL is given in figure F.8.

Figure F.2 - Gravel measurement and loading system

n

[a)

<

>

o

(@]

@)

©

Q

o

<

o

(&)

[

D

~

o

o

AN

o

Q

o

o

+

|_

=

@)

Ln

<

<

Te) CONTROL PANEL:

& A N

o | SILO | INDICATORS PUSH BUTTONS
o

N | | ON
C

s | | CONTROL SYSTEM ON OFF
§ | | TRUCK ON RANP ACKNOLEDGE
- | | SI LO EMPTY FILL
(@)

s \ / CONVEYOR RUNNI NG LOAD
(@)

% \ / LAMP TEST
g | | "Silo enpty”

5 ol Timt switch 2-DIGIT BCD:

Q | / | Silo valve DISPLAY THUMBWHEEL
35

% oot BI N LEVEL SET PO NT
c

. | BIN| SIREN : SILO EMPTY

= I I

= \ /" B? n enpty”

T | o | [imt switch

— | / | Bin valve

P oo+

o

(@)

c

e

: )

(¢D]

|_

@)

L \

2 X

z O

- o @ @

> "Truck on ramp" limit switch

o T
@) T HH T
&) H EEEEEEEEEEEEEs =3
©

(]

(7]

C

(0]

O

—

IEC 2503/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 196
EN 61131-3:2002

PROGRAM GRAVEL

VAR INPUT
OFF PB
ON_PB
FILL PB
SIREN ACK
LOAD PB
JOG_PB
LAMP TEST

BIN EMPTY
SETPOINT
END VAR

RUNOUT TIME:
RUN_IN TIME:
SILENT TIME:
OK_TO_RUN

(* Function

BLINK: TON;
BLANK: TON;
PULSE: TON;

SILENCE TMR:
END VAR

END PROGRAM

: BOOL ; . a
TRUCK_ON_RAMP : BOOL ; (* Opticaléj(\\x\)

SILO EMPTY

(* Gravel measurement and loading system *)

BOOL ;
BOOL ;

BOOL ; (* Load truck from bin *) \)g

BOOL ;
-

LS : BOOL ;
LS  : BOOL ;
¥igit BCD *)

CONTROL LAM BOOL ;
TRUCK LAMP BOOL ;
SILO_EMPTY LAMP : BOOL ;
CONVEYOR LAMP : BOOL ;
CONVEYOR MOTOR : BOOL ;
SILO_VALVE BOOL ;
BIN VALVE BOOL ;
SIREN BOOL ;
BIN LEVEL BYTE ;
END VAR
VAR
BLINK TIME TIME; (* BLINK ON/OFF time *)
PULSE TIME TIME; (* LEVEL CTR increment interval *)

TIME; (* Conveyor running time after loading *)
TIME; (* Conveyor running time before loading ¥*)
TIME; (* Siren silent time after SIREN ACK *)
BOOL; (* 1 = Conveyor is allowed to run *)
Blocks *)

(* Blinker OFF period timer / ON output *)
(* Blinker ON period timer / blanking pulse *)
(* LEVEL CTR pulse interval timer *)

SIREN FF: RS;

TP; (* Siren silent period timer ¥*)

VAR RETAIN LEVEL CTR : CTU ; END VAR

(* Program body *)

; ('J
o S

Figure F.3 - Declarations for program GRAVEL

IEC 2504/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 197
EN 61131-3:2002

+=::=J|r====+ gﬁa\)g

+ NOT FILL PB OR NOT CONTROL.X + LEVEL CTR.Q

+-—=+ |

| Fmm Se—m +

| Fe———= F———— +

| | LOAD WAIT |

| Fe— +

|

|

|

| Fm———t——= +

| | RUN_IN |

| Fe———t———t

| |

| e *

| | |

| + NOT OK TO RUN + RUN _IN.T >= RUN IN TIME
| | |

| +==—+ Fm———= +=———t Fm— e +
| | | DUMP BIN |---| N | BIN VALVE |
| | Fm———= +=———t Fm— +
| | |

| | T *

| | | |

| | + NOT OK_TO_ RUN + BIN EMPTY LS

| | | |

| +===+ Fm———t———t

| | | RUNOUT |

| | Fm———t———t

| | |

| | e *

| | | |

| | + NOT OK _TO_ RUN + RUNOUT.T >= RUNOUT TIME
| +-——+ |

Fmm +

t====t====1 <::
|| START || 66‘

S\

Figure F.4 - SFC of program GRAVEL body

IEC 2505/02



Page 198
EN 61131-3:2002

|

|

|

|+ ==+ + t=s=========t o \)
| | |CONTROL OFF] | || MONITOR ||---| N | MONITORACTJQ@’
|+ ==+ + fe===========f  t-——F————g— %’——

| | ‘(‘\
|

|

|

|

|

|

+ ON_PB & NOT OFF PB

|
et e S ettt

| CONTROL |-=| N |
A +_"Y\"\ <

| N o

R + | | BLINK BLANK |
| | +-+ o= + o + |
! +---0]&| | TON | | TON ||
| CONTROL.X-—| [----- [IN Qf----- [IN  Q]--+
| +-+ +-—|PT | +-—|PT | |
! | 4 £ A + |
| BLINK TIME--+-—=======—= + |
! =t !
| CONTROL . X-———-~ & |
TRUCK ON RAMP-=—| |===4-—======— OK_TO_RUN
! = !
! | A !
| fmmmmm + +--]&|--CONVEYOR MOTOR |
| JOG_PB------ | >=1 |----- I |
[RUN IN.X----| \ +=+ |
[DUMP BIN.X--| | |
| RUNOUT . X-——- | \ |
! e + |
e +

IEC 2506/02

Figure F.5 - Body of program GRAVEL (continued) -
control state sequencing and monitoring

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 199
EN 61131-3:2002

MONITOR ACTION

CONVEYOR MOTOR-——=======—————————————— | & |------ CONVEYOR L P€6‘
BLINK.Q-—====———————mmm oo I \)

CONTROL . X=====—=———————————mmmm
LAMP TEST---------—--

| tm———- +
e | >=1 |---SILO_EMPTY LAMP
ot ! |
BLINK.Q----=---———- | & |—==——mm—————— | \
SILO EMPTY LS--+---| | tmmmmm +
|  +---+ SIREN FF
| to————- +
| | RS |
Fomm oo IS Ql|---———====-- SIREN
SILENCE TMR | \
Fommm s + ! |
| TP | | \
SIREN ACK----- |IIN  Q|----- IR1
SILENT TIME---|PT | tmmm e +
tmmm e + LEVEL CTR
- +
| CTU |
BIN EMPTY LS---———————--————- IR Q]
e + o \
| PULSE | | \
R R S |
+---Ol&| | TON | | | |
FILL BIN.X--| |--|IN Q|--+-->CU |
-t ! ! |
PULSE TIME------- |PT | | \
oo + | |
Fmm + | | +
SETPOINT----| BCD TO INT |---|PV CV|--| INT TO BCD |--BIN LEVEL
Fom I + ot +

@0«\\

Figure F.6 - Body of action MONITOR ACTION in FBD language

IEC 2507/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 200

EN 61131-3:2002

Figure F.7 - Body of program GRAVEL in textual SFC representation
using ST language elements

(* Major operating states *) €E>
INITIAL STEP START : END STEP e
TRANSITION FROM START TO FILL BIN g

:= FILL PB & CONTROL.X ; END TRANSITION

STEP FILL BIN: SILO VALVE (N); END ST \c(\\
TRANSITION FROM FILL BIN TO START <:£

:= NOT FILL PB OR NOT CONT ND TRANSITION

TRANSITION FROM FILL B N g » WAIT := LEVEL CTR.Q ;
END TRANSITION

STEP LOAD | % STEP

TRANSITION LOAD WAIT TO RUN IN

:= LOAD PB & OK TO RUN ; END TRANSITION

STEP RUN_IN : END STEP
TRANSITION FROM RUN IN TO LOAD WAIT := NOT OK TO RUN ;
END TRANSITION
TRANSITION FROM RUN IN TO DUMP_BIN
:= RUN IN.T > RUN IN TIME;
END TRANSITION

STEP DUMP BIN: BIN VALVE (N); END STEP

TRANSITION FROM DUMP BIN TO LOAD WAIT := NOT OK TO RUN ;
END TRANSITION
TRANSITION FROM DUMP BIN TO RUNOUT := BIN EMPTY LS ;

END TRANSITION

STEP RUNOUT : END STEP
TRANSITION FROM RUNOUT TO LOAD WAIT := NOT OK TO RUN ;
END TRANSITION
TRANSITION FROM RUNOUT TO START
:= RUNOUT.T >= RUNOUT TIME ; END TRANSITION

(* Control state sequencing *)
INITIAL STEP CONTROL OFF: END STEP
TRANSITION FROM CONTROL OFF TO CONTROL

:= ON_PB & NOT OFF PB ; END TRANSITION

STEP CONTROL: CONTROL ACTION (N); END STEP
ACTION CONTROL ACTION:

BLINK (EN:=CONTROL.X & NOT BLANK.Q, PT := BLINK TIME) ;
BLANK (EN:=BLINK.Q, PT := BLINK TIME) ;
OK _TO RUN := CONTROL.X & TRUCK ON RAMP ;

CONVEYOR MOTOR :=
OK TO RUN & OR(JOG_PB, RUN IN.X, DUMP BIN.X, RUNOUT.X);
END ACTION
TRANSITION FROM CONTROL TO CONTROL OFF := OFF PB ;
END TRANSITION

o‘“\



Page 201
EN 61131-3:2002

Figure F.7 - Body of program GRAVEL in textual SFC representation
using ST language elements

(* Monitor Logic *) \
INITIAL STEP MONITOR: MONITOR ACTION(N); END STEP ~0(0
ACTION MONITOR ACTION: (IJ
CONVEYOR LAMP := CONVEYOR MOTOR & BLINK.Q ; 66‘
CONTROL LAMP := CONTROL.X OR LAMP TEST ; g

TRUCK_LAMP := TRUCK ON RAMP OR LAMP TEST ; S:hg
SILO EMPTY LAMP := BLINK.Q & SILO EMPTY LS ia@ﬁ
SILENCE_TMR (IN:=SIREN ACK, PT:=SILENT ‘cﬁk‘?i

SIREN FF(S:=SILO EMPTY LS, R1:=SI ;

SIREN := SIREN FF.Ql ;

PULSE (IN:=FILL BIN.X
LEVEL CTR(R := BIN ;\

PT:=PULSE TIME) ;

, CU := PULSE.Q,
@ INT (SETPOINT)) ;
BINiLEVEL := TO BCD (LEVEL CTR.CV) ;

END ACTION

IEC 2508/02

CONFIGURATION GRAVEL CONTROL
RESOURCE PROC1 ON PROC TYPE Y
PROGRAM G : GRAVEL

(* Inputs ¥*)

(OFF_PB = %I10.0 ,
ON_ PB = %I0.1 ,
FILL PB 1= %I10.2 ,
SIREN ACK = %I0.3 ,
LOAD PB = %10.4 ,
JOG_PB 1= %I0.5 ,
LAMP TEST = %I10.7 ,
TRUCK _ON RAMP := %I1.4 ,
SILO EMPTY LS := %I1.5 ,
BIN EMPTY LS = %Il.6 ,
SETPOINT = %IB2 ,
(* Outputs ¥*)
CONTROL LAMP => %04.0,
TRUCK_LAMP => %04.2,
SILO EMPTY LAMP => %Q4.3,
CONVEYOR LAMP => %05.3,
CONVEYOR MOTOR => %0Q5.4,
SILO VALVE => %05.5,
BIN VALVE => %05.6,
SIREN => %05.7,
BIN LEVEL => %B6) ;

END RESOURCE
END CONFIGURATION

IEC 2509/02

Figure F.8 - Example configuration for program GRAVEL

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 202
EN 61131-3:2002

F.8 Program AGV

The AGV is to travel between two extreme positions, left (indicated by limit switch S3)

As illustrated in figure F.9, a program is to be devised to control an automatic guided vehicle EAm\

(indicated by limit switch s4). The normal position of the AGV is on the left. 66

The AGV is to execute one cycle of left-to-right and return motlon perator actuates
pushbutton s1, and two cycles when the operator actuates pushb é Is also possible to pass
from a single to a double cycle by actuating pushbutton S2 cycle. Finally, non-repeat

locking is to be provided if either S1 or S2 remains actua

Figure F.10 illustrates the graphical declara ogram AGV, while figure F.11 shows a typical
configuration for this program. F|gur s the AGV program body, consisting of a main control
sequence and a single-cycle c nce
\ ‘
LEFT_LS REV_MOTOR(®) () FwD_MOTOR RIGHT_LS
( )

AGV Control Panel

SINGLE_PB |1 Cyclel |2 Cyclesl DOUBLE_PB
\_ J

Figure F.9 - Physical model for program AGvV

o +
| AGV |
BOOL---| SINGLE PB FWD_ MOTOR | -—-BOOL
BOOL---| DOUBLE PB REV_MOTOR|---BOOL
BOOL---|LEFT LS |
BOOL---|RIGHT LS |

Fmm +

IEC 2511/02
Figure F.10 - Graphical declaration of program AGvV

IEC 2510/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 203

EN 61131-3:2002

CONFIGURATION AGV_CONTRCL

RESOURCE AGV_PROC: SMALL PC

| AGV |

$TX1---|SINGLE PB FWD MOTOR|---%QX1 a'\)
Q)

o

$IX2---|DOUBLE_PB REV_MOTOR|---%QX2
$IX3---|LEFT_LS | .
$TX4---|RIGHT LS X\\
+t-—-—————————— ‘— “‘— +
.
o\

NN
Figurﬁ“ draphical configuration of prog

ram AGV

____________________________ +
i
t===t===+ (* Main se
| | START |
t===t===+
i
Fmm *m e +
| \
+ READY.X & SINGLE PB + READY.
| \
Fo—t———t At + o+
! SINGLE+- !N!CYCLE! ' DOUBLE_1+--
fo—t———t At + o+
| \
Hommm e + + DONE.X
| + DONE.X & DOUBLE PB |
' fom +
| \
' - +——— +
+ DONE.X & NOT DOUBLE PB |DOUBLE WAIT|
' - +——— +
| \
| + READY.
| \
' o+
! | DOUBLE 2+--
' o+
| \
| + DONE.X
| \
fm F—m——— +
i
fom = +
i NON_ REPEAT
R +

X & DOUBLE PB

t—t————— +
I N CYCLE |
t—to———— +

X

too———— +
IN|CYCLE |
too———— +

Figure F.12 - Body of program AGV

IEC 2512/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 204
EN 61131-3:2002

——————— +

|

f===gf===4

| 'READY! |

f===gf===4
|
+ CYCLE
|

fmm—tm——t A—fmm +

e e S +
| REVERSE+- |N|REV_MOTOR |
fom—tmm—t oo +
|
+ LEFT LS
|
+-—t—+
| DONE |
+-—t—+
|
+ NOT CYCLE

Figure F.12 - Body of program AGV (continued)

IEC 2513/02



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 205
EN 61131-3:2002

F.9 Use of enumerated data types

The following example illustrates the use of enumerated data types in ST CASE statements and in
Instruction List. Suppose an enumerated data type has been defined by the following declaratlon \

TYPE SPEED: (SLOW, MEDIUM, FAST, VERY FAST); END TYPE 66 G

In addition, suppose an input and output of a function block type is declare g

-
VAR INPUT MOTOR SPEED: SPEED; END VAR = “a
VAR OUTPUT SPEED_OUT: SPEED; END VA

Then if the body of the function block type i in the ST language, a CASE statement such as
the following could be used:

CASE MOTOR SPE“
SLOW: sp it up *);

(*

MEDIUM: (* hold the current speed *);
FAST: (* slow it down *);

ELSE (* take special care *);

END CASE;

If the body of the function block type is defined in the IL language, the following instructions could be
used:

LD SPEED#SLOW (* enumerated value qualified by data type ¥*)
ST SPEED OUT
F.10 Function block RTC (Real Time Clock)
The RTC function block shown below sets the output CDT to the input value PDT at the next evaluation

of the function block following a transition from 0 to 1 of the 1IN input. The CDT output of the RTC
function block is undefined when the value of IN is 0.

Function block RTC (Real Time Clock)

PDT = Preset date and time, o +
loaded on rising edge of IN | RTC |
CDT = Current date and time, BOOL--=[IN  Q]---BOOL
valid when IN=1 PT====- | PDT CDT | -==-= =
Fom———— +

Q = copy of IN

F.11 Function block ALRM_INT

This function block type provides simple high and low level alarming for an input of type INT and
illustrates the use of the VAR_OUTPUT declaration with functions. The function output is TRUE if a high
or low threshold is exceeded, and separate outputs are provided for the high- or low-level alarm
conditions.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 206

EN 61131-3:2002

+___

| AL
IN----| INT
THI---|INT
THL---| INT
+___

o=+
IN-——| > |
THI--| |
-t
-t
IN-——| < |
THL-- | |
o=t

——————— +
RM INT |
| ==-BOOL
HI|---BOOL
LO|---BOOL
——————— +
e HI
| ===
+--| OR |---ALRM INT
SR
| to———t * \

R "(\’ﬁ.\‘»

-to

HICé .
\S\QP&A;: OOL;

FUNCTION ALRM INT BOOL

VAR INPUT
INT IN ;
INT THI ; (* High thr )
INT 1d *)

VAR O
(* High level alarm *)

S

(* Low level alarm *)

ND VAR
HI := IN > THI ;
L0 := IN < THL ;
ALRM INT := THI OR THL ;

END FUNCTION

cok(\\

.




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

NOTE 1

NOTE 2

Page 207
EN 61131-3:2002

ANNEX G
(informative)

Reference character set ((\\

The contents of the most recent edition of “table 1Row 00: 1SO-646 qQ /IEC
10646-1 are normative for the purposes of this standard. The refe acter set is
reproduced here for information only. a

of the characters in this
ariables of type WSTRING, the
ings are also as given in table H.2.

In variables of type STRING, the individual by}e era
Y

reference character set are as given in tablg J
numerical equivalent of individual 16-bit wor

.
Table 6\1\
Y

cter representations

\ ﬁs S P First hexadecimal digit
Seco 2 3 4 5 6 7
hexadecimal
digit
0 0 @ P ) o)
1 ! 1 A Q a a
2 " 2 B R b r
3 # 3 c S c S
4 $ 4 D T d t
5 % 5 E U e u
6 & 6 F v £ v
7 ! 7 G W g W
8 ( 8 H X h x
9 ) 9 I Y i y
A * J 7 j z
B + ; K [ k {
(9 , < L \ 1 |
D - = M ] m }
E > N ~ n ~
F / ? 0 _ o !




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 208

EN 61131-3:2002

Table G.2 - Character encodings

dec hex Name dec hex Name

032 20 |[SPACE 080 50 |[LATIN CAPITAL LETTERP
033 21 EXCLAMATION MARK 081 51 LATIN CAPITAL LETTE
034 22 |QUOTATION MARK 082 52

035 23 |NUMBER SIGN 083 53 TTER S
036 24 |DOLLAR SIGN 084 54 LETTERT
037 25 |PERCENT SIGN 085 D5 4 APITAL LETTER U
038 26 |AMPERSAND 086 \@&\ TIN CAPITAL LETTER V
039 27 |APOSTROPHE &880 LATIN CAPITAL LETTER W
040 28 |LEFT PARENTHESIS 88 58 |LATIN CAPITAL LETTER X
041 29 |RIGHT PARENTH W 089 59 |LATIN CAPITAL LETTERY
042 2A | ASTERISK 'Ef\ 090 5A |LATIN CAPITAL LETTER Z
043 2B |PLUS \Q * 091 5B |LEFT SQUARE BRACKET
044 2C COMM?AW 092 5C |REVERSE SOLIDUS

045 2D |HYPHEN-MINUS 093 5D |RIGHT SQUARE BRACKET
046 2E |FULL STOP 094 5E |[CIRCUMFLEX ACCENT
047 2F |[SOLIDUS 095 5F |LOW LINE

048 30 |DIGIT ZERO 096 60 |GRAVE ACCENT

049 31 DIGIT ONE 097 61 LATIN SMALL LETTER A
050 32 |DIGIT TWO 098 62 |LATIN SMALLLETTERB
051 33 |DIGIT THREE 099 63 |[LATIN SMALL LETTERC
052 34 |DIGIT FOUR 100 64 |LATIN SMALL LETTERD
053 35 |DIGIT FIVE 101 65 |LATIN SMALLLETTERE
054 36 |DIGIT SIX 102 66 |LATIN SMALLLETTERF
055 37 |DIGIT SEVEN 103 67 |LATIN SMALLLETTERG
056 38 |DIGIT EIGHT 104 68 |LATIN SMALL LETTERH
057 39 |DIGIT NINE 105 69 |LATIN SMALL LETTER I
058 3A |COLON 106 6A |LATIN SMALL LETTER J
059 3B | SEMICOLON 107 6B |LATIN SMALL LETTER K
060 3C |LESS-THAN SIGN 108 6C |LATIN SMALL LETTERL
061 3D |EQUALS SIGN 109 6D |LATIN SMALL LETTER M
062 3E | GREATER-THAN SIGN 110 6E |LATIN SMALL LETTER N
063 3F [QUESTION MARK 111 6F |LATIN SMALL LETTER O
064 40 |[COMMERCIAL AT 112 70 |LATIN SMALL LETTERP
065 41 LATIN CAPITALLETTER A 113 71 LATIN SMALL LETTER Q
066 42 |LATIN CAPITALLETTERB 114 72 |LATIN SMALL LETTERR
067 43 [LATIN CAPITALLETTERC 115 73 |LATIN SMALL LETTER S
068 44 | LATIN CAPITAL LETTERD 116 74 |LATIN SMALL LETTERT
069 45 |LATIN CAPITAL LETTERE 117 75 |LATIN SMALL LETTER U
070 46 |LATIN CAPITAL LETTER F 118 76 |LATIN SMALL LETTER V
071 47 |LATIN CAPITAL LETTER G 119 77 |LATIN SMALL LETTER W
072 48 |LATIN CAPITAL LETTERH 120 78 |LATIN SMALL LETTER X
073 49 | LATIN CAPITAL LETTER | 121 79 |LATIN SMALL LETTERY
074 4A | LATIN CAPITAL LETTER J 122 7A |LATIN SMALL LETTER Z
075 4B |LATIN CAPITAL LETTER K 123 7B |LEFT CURLY BRACKET
076 4C |LATIN CAPITAL LETTER L 124 7C | VERTICAL LINE

077 4D |LATIN CAPITAL LETTER M 125 7D |RIGHT CURLY BRACKET
078 4E |LATIN CAPITAL LETTER N 126 7E | TILDE

079 4F |LATIN CAPITAL LETTER O

Al




Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

EN 61131-

Annex ZA
(normative)

Page 209
3:2002

Normative references to international publications GO((\

with their corresponding European publications 66

publications. These normative references are cited at the appr es in the text and the
publications are listed hereafter. For dated references, su ents to or revisions of any
of these publications apply to this European Standard incorporated in it by amendment or
revision. For undated references the latest editi publication referred to applies (including
amendments).

This European Standard incorporates by dated or undated refeg |ons from other
m

NOTE  When an international publ a§\\en modified by common modifications, indicated by (mod), the relevant
EN/HD applies.

Publication Year T|tle EN/HD Year

IEC 60050 Series International Electrotechnical - -
Vocabulary

IEC 60559 1989 Binary floating-point arithmetic for HD 592 S1 1991
microprocessor systems

IEC 60617-12 1997  Graphical symbols for diagrams EN 60617-12 1998
Part 12: Binary logic elements

IEC 60617-13 1993 Part 13: Analogue elements EN 60617-13 1993

IEC 60848 2002 GRAFCET specification language for EN 60848 2002
sequential function charts

IEC 61131-1 - Programmable controllers EN61131-1 1994 ?
Part 1: General information

IEC 61131-5 -1 Part 5: Communications EN 61131-5 2001 ?

ISO/AFNOR 1989 Dictionary of computer science - The - -

standardised vocabulary

ISO/IEC 10646-1 1993 Information technology - Universal - -
Multiple-Octet Coded Character set
(UCS) - Part 1: Architecture and Basic
Multilingual Plane

R Undated reference.

2 Valid editon at date of issue.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 210
EN 61131-3:2002

Index

Primary references for delimiters and keywords are given in annex C.

absolute time, 28

access path, 108, 110
communication, 16

keyword, 39 ’ga'
loading/deletion, 16 .
programming, 18 G‘\\‘\a‘

action, 84, 89, 123 .
control, 94
qualifiers, 93 . \\

action block, 89, 91, 92, 95\\\\9 .

active association, 95
active association, 95
activity flow, 135
aggregate, 10
argument, 66, 130, 133

array
declaration, 32, 42
initialization, 33, 42
location assignment, 42
usage, 38, 134

assignment, 86
FOR loop variable values, 134
operator, 33, 86
statement, 133

assignment, 47, 49, 51, 68
based number, 10, 25
bistable function block, 77

bit string
comparison, 59
data types, 30
functions, 59
initial value assignment, 42
variable declaration, 41

body
function, 51, 133
function, 49, 68
function block, 66
program organization unit, 136

Boolean
AND, in ladder diagrams, 140
data type, 30
default initial value, 34
edge detection, 69, 78
expression, 86, 130, 133, 134
functions, 59
functions, 95
input, action control, 95



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 211
EN 61131-3:2002

input, RETURN, 138
literals, 25
negation, 47

operators, 130 ((\\
OR, LD vs. FBD, 143

output, 138 GO
signal, 138

values, power flow, 139 a
variable, 84, 85, 89, 90, 94, 114, 134, 138 a’g

variable, in ladder diagrams, 140 .

byte (data element size), 37 G‘\\

BYTE (data type), 30, 34
case (of characters), 23, 24, 28 . \\
.

CASE statement, 133 \\\’\Q

character code, 24, 62
character set, 23, 84, 135, 141

character string
character positions in, 62
comparison, 62
data type, 30
functions, 62
initialization, 42
literals, 26
variable declaration, 41

cold restart, 38, 41, 42, 43, 44
comment, 24

comparison
bit strings, 59
character strings, 62
functions, 59, 66

compilation, 21

compliance, 19
action declarations, 89
EXIT statement, 132
programs, 22
sequential function chart (SFC), 108
step/action association, 91
syntax, 21
system, 20

concatenation
action blocks, 91, 93
hierarchical addresses, 36
time data, 64

conditional
jump, 138
return, 138

configuration
communication, 16
elements, 108
initialization, 15
programming, 18
starting and stopping, 15



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 212

EN 61131-3:2002

connection, 83

connector, 86, 88, 135, 136
contact, 140

counter, 78

data type
compliance, 21
declaration, 32
elementary, 30
generic, 31, 53
initialization, 33
of an expression, 129
of functions, 50 \
of internal variables, 50 * \
programming, 18 ‘\’\Q *
usage, 35 \\
date and time, 81
data types, 30
default initial values, 34

functions, 64
literals, 29

decimal number (decimal literal), 25, 135

declaration, 18
access paths, 110
actions, 89, 94
configurations, 108
data types, 32
function blocks, 66, 69
functions, 50, 133
programs, 83
resources, 110
tasks, 114
variables, 39

default value, 52
FOR increment, 134
of data types, 33
of variables, 38, 42
task interval, 114

delimiter
comments, 24
LD network, 139
network label, 135
time literals, 28

direct representation, 36, 83, 111
in programs, 83
initial value assignment, 42
variable declaration, 41

double word, 30
size prefix, 37

duration
data type (TIME), 30
literals, 28
of action qualifiers, 93
of step activity, 100



Page 213
EN 61131-3:2002

edge detection, 69
function blocks, 78

EN/ENO (enable) variables, 49, 50, 68 \
errors, 24, 32, 36, 40, 46, 47, 49, 52, 55, 56, 59, 61, 63, 64, 69, 85, 87, 95, 100, 114, 115,6@&9
133, 134, 137, 167

documentation, 21 66 :

handling, 21, 22 a'\)

reporting, 21 ’g
errors, 85, 100, 135 ‘\\(\6«
evaluation G

of assignment statements, 133 *

of expressions, 129 \

of function blocks, 115 "\

of functions, 58, 130, 1 \\Q

of language elements, 1

of network elements, 136

of networks, 66, 136, 141, 143

of programs, 115
of transitions, 100

execution
of actions, 84
of EXIT statements, 134
of function blocks, 66, 78, 115
of functions, 49
of iteration statements, 134
of loop elements, 137
of programs, 138
of selection statements, 133

execution control element, 84, 114, 136, 138, 141

extensions, 21, 37
documentation, 21
processing, 21
usage, 22

extensions, 24
falling edge, 69, 71, 78

feedback
path, 137
variable, 137

FOR statement, 134

function, 45
compliance, 21
control statements, 133
extensible, 55
in LD language, 140
overloaded, 53, 56, 59
programming, 18
return value, 133
signal flow, 135
typing, 53

function (procedure), 11

function block, 11, 14, 66
action control, 94

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Page 214
EN 61131-3:2002

communication, 16, 83
compliance, 21

control statements, 133

in LD language, 140 0((\
instance, 114, 115

operation, 78, 81 G

programming, 18
retentive, 85

SFC structuring, 84 afg@»
signal flow, 135 .
type, 67 G\(\\(\

function block diagram, 11 .

function block diagram (FBD), 14, 143 \
action blocks in, 93 \
execution control, 138 \Q
loops in, 137 \\
signal flow in, 135

function block instance, 11
function block type, 11
generic data types, 31, 53

global variable, 108
communication, 16
declaration, 39, 83, 110
function block instance, 66
initial value assignment, 42
initialization, 15
loading/deletion, 16
programming, 18

hierarchical addressing, 37
identifier, 23, 66, 84, 86, 135
identifier, 50

implementation-dependent
feature, 21, 22, 38, 42, 134
side effects, 68

implementation-dependent parameters, 20, 24, 32, 33, 37, 40, 45, 51, 55, 56, 66, 81, 83, 85, 87, 91,
100, 114, 129, 131, 133, 135, 165
initial

state, 84

step, 84, 85, 99

initial value
assignment, 42
default, 33
feedback variable, 137
FOR loop variable, 134

initialization, 38
function blocks, 69
function blocks, 99
programs, 83
programs, 99
SFC networks, 99
steps, 85

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

initialization, 15



Page 215
EN 61131-3:2002

input
declaration, 39, 50, 69
dynamic, 69
extensible, 55 0((\
initialization, 38
instance name, 66 G

location prefix, 37
negated, 47

overloaded, 53 ,ga'
program, 111 . ‘\a
string, 56 \(\\
variable, 67, 140 G
variable, 83 N .
input/output . \\

variable, 66 \\,\\Q .

instance
function block, 66, 67, 69, 70, 71, 114, 115
name, 66, 67, 70, 71

instantiation
action control, 95
function block, 83
program, 83

instruction, 86, 89

integer
data types, 30, 134
literal, 12, 25, 135

invocation
by tasks, 114
function block, 133
function block, 66, 67, 69
of actions, 84
of functions, 129
of non-PC language elements, 18
recursive, 45
return from, 138

iteration, 132, 134

keyword, 24
Boolean literals, 26, 86
data types, 30
ELSE statement, 133
FOR statement, 134
function block declaration, 69
function declaration, 50
IF statement, 133
program declaration, 83
REPEAT statement, 134
time literals, 28
transition, 86
variable declaration, 39
WHILE statement, 134

label
connector, 135
network, 135, 136, 138

ladder diagram, 139

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Page 216
EN 61131-3:2002

evaluation, 136
execution control, 138
network, 86

language element, 14
compliance, 19
programming, 18, 83

library, 18, 110

literal, 25, 129, 139 . afga
logical location, 36, 37, 39, 41 G\(\\(\

long real, 30 .
long word, 30 \\N
memory, 140 \\Q“

A\

memory (user data storage
allocation, 39
direct representation, 36
initial value assignment, 42
initialization, 38

named element, 38, 135

network, 12, 94
direction of flow, 135
evaluation, 66, 136, 141, 143
function block diagram (FBD), 86, 89
label, 138
ladder diagram (LD), 86, 139
sequential function chart (SFC), 84, 98, 99

network, 135
numeric literals, 25
off-delay, 12, 81
on-delay, 12, 81

operand
of an expression, 129

operator
assignment, 33, 86, 133
overloaded, 53
precedence, 129, 130
Structured Text (ST), 129
symbols, 58, 60, 62, 65

output
action control, 94
declaration, 69
function block, 132, 143
location prefix, 37
negated, 47
program, 111
string, 56
typed, 53
values, 66
variable declaration, 39
variables, 67, 83, 140
variables, 66

Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

overloading, 53
of operators, 130

parentheses, 24, 33, 38, 43, 86, 130

power flow, 93, 135, 138, 139, 141
power rails, 139

power rails, 135, 138, 139
pre-emptive scheduling, 114

priority
of tasks, 114
of transitions, 100

program, 14, 18, 83

.
communication, 16 Q
compliance, 22 \\\.\'

declaration, 39, 83, 111
declaration, 66, 75
retentive, 85
scheduling, 114

SFC structuring, 84

program organization unit, 45, 66
compliance, 20
declaration, 39, 46
initial state, 84
jumps in, 138
networks in, 135, 136, 141
scheduling, 114
SFC partitioning of, 84
state, 84

programming, 18, 139
programming, 143
real literal, 25

resource, 14, 83
communication, 17
declaration, 110
global variables in, 111
initialization, 15, 38
programming, 18
starting and stopping, 15, 115

retentive data
declaration, 39, 83
in function blocks, 69
in steps, 85
initial value assignment, 42
initialization, 38
type assignment, 41

return, 132, 133, 138

rising edge, 69, 71, 78, 114, 206
rung, 139

rung, 89

scope
global, 111

Page 217
EN 61131-3:2002

\



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 218
EN 61131-3:2002

of actions, 89

of declarations, 40

of function block instances, 66
of networks, 135

of steps, 84

of transitions, 87

selection
functions, 59, 66
statements, 133

semantics
Structured Text (ST), 129

semigraphic representation, 69, 114, 1

sequential function chart (SFC) *
activity flow, 135 \\Q
compliance, 108 \\
convergence, simultaneous, 100
divergence, selection, 100
divergence, simultaneous, 100
elements, 14, 84
elements, 123, 134, 135
elements, compatibility of, 107
errors, 100
evolution, 99
programming, 18

signal flow, 135, 143
single data element, 35, 36

step, 84
action association, 91
activation, 100
activation, 99
active, 84, 85, 100
active, 95
deactivation, 84, 91, 99
duration, 100
elapsed time, 84, 85
flag, 84, 85
inactive, 84
initial, 84, 85, 99
initialization, 85
retentive, 85
state, 84, 99, 100, 105

structured data type, 67
declaration, 32
initialization, 33
usage, 35

structured variable, 38
assignment, 133
declaration, 42
initialization, 42
step elements, 84

subscripting, 38
array initialization, 43

symbolic representation, 36, 41

e

.



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

Page 219
EN 61131-3:2002

synchronization
interprocess, 134
of function blocks, 114

syntax, 14 G 0((\\

documentation, 21

step/transition, 100 66 .
task, 14, 114 g
declaration, 110 ,ga'
programming, 18 . ‘\a
TIME data type, 30, 84, 85, 93 G\(\\

default initial value, 34 .

function blocks, 81
functions, 64

A\
time literal, 28 \\\'\Q ‘\

time of day
data types, 30
default initial value, 34
functions, 64
keywords, 29
literals, 28

timer, 81

transition, 84, 86
clearing, 99, 100
clearing time, 100
condition, 84, 86, 89, 99
enabled, 99
evaluation, 100
priority, 100
symbol, 99

type conversion
functions, 53, 55

typed literals, 26
underline character, 23, 25, 53

unsigned integer, 135
data types, 30

variable, 36
declaration, 50, 69
usage, 35

WAIT function, 89, 134
warm restart, 38

white space, 24

wired OR, 143



Licensed Copy: Institute Of Technology Tallaght, Institute of Technology, Wed Jun 20 03:54:45 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

BS EN
61131-3:2003

BSI

389 Chiswick High Road
London

W4 4AL

BSI — British Standards Institution

BSI is the independent national body responsible for preparing
British Standards. It presents the UK view on standards in Europe and at the
international level. It is incorporated by Royal Charter.

Revisions ((\\
British Standards are updated by amendment or revision. Users 90
British Standards should make sure that they possess the la (@ endments or

editions. a\)é

It is the constant aim of BSI to improve the qualig’ T products and services.
We would be grateful if anyone finding ana Ay or ambiguity while using
this British Standard would inform % Ary of the technical committee
responsible, the identity of whi am ound on the inside front cover.

Tel: +44 (0)20 8996 9000. 4%0)20 8996 7400.

BSI offers membe‘l
a
.

ividual updating service called PLUS which ensures

that subscrih, atically receive the latest editions of standards.

BuyinK&Srn rds

Orders for all BSI, international and foreign standards publications should be
addressed to Customer Services. Tel: +44 (0)20 8996 9001.

Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also
available from the BSI website at http://www.bsi-global.com.

In response to orders for international standards, it is BSI policy to supply the
BSI implementation of those that have been published as British Standards,
unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and
international standards through its Library and its Technical Help to Exporters
Service. Various BSI electronic information services are also available which give
details on all its products and services. Contact the Information Centre.

Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com.

Subscribing members of BSI are kept up to date with standards developments
and receive substantial discounts on the purchase price of standards. For details
of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.

Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards
Online can be found at http://www.bsi-global.com/bsonline.

Further information about BSI is available on the BSI website at
http://www.bsi-global.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the
UK, of the publications of the international standardization bodies. Except as
permitted under the Copyright, Designs and Patents Act 1988 no extract may be
reproduced, stored in a retrieval system or transmitted in any form or by any
means — electronic, photocopying, recording or otherwise — without prior written
permission from BSI.

This does not preclude the free use, in the course of implementing the standard,
of necessary details such as symbols, and size, type or grade designations. If these
details are to be used for any other purpose than implementation then the prior
written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager.
Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553.
Email: copyright@bsi-global.com.




